Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T06:27:24.156Z Has data issue: false hasContentIssue false

Approximate Aggregation Methods in Discrete Time StochasticPopulation Models

Published online by Cambridge University Press:  08 April 2010

Get access

Abstract

Approximate aggregation techniques consist of introducing certain approximations thatallow one to reduce a complex system involving many coupled variables obtaining a simplerʽʽaggregated systemʼʼ governed by a few variables. Moreover, they give results that allowone to extract information about the complex original system in terms of the behavior ofthe reduced one. Often, the feature that allows one to carry out such a reduction is thepresence of different time scales in the system under consideration. In this work we dealwith aggregation techniques in stochastic discrete time models and their application tothe study of multiregional models, i.e., of models for an age structured populationdistributed amongst different spatial patches and in which migration between the patchesis usually fast with respect to the demography (reproduction-survival) in each patch.Stochasticity in population models can be of two kinds: environmental and demographic. Wereview the formulation and the main properties of the dynamics of the different models forpopulations evolving in discrete time and subjected to the effects of environmental anddemographic stochasticity. Then we present different stochastic multiregional models withtwo time scales in which migration is fast with respect to demography and we review themain relationships between the dynamics of the original complex system and the aggregatedsimpler one. Finally, and within the context of models with environmental stochasticity inwhich the environmental variation is Markovian, we make use these techniques to analyzequalitatively the behavior of two multiregional models in which the original complexsystem is intractable. In particular we study conditions under which the population goesextinct or grows exponentially.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, J.A. Sanz, L.. Aproximating the Distribution of Population Size in Stochastic Multiregional Matrix Models withFast Migration . Phil. Trans. R. Soc. A, 367 (2009), 4801-4827.CrossRefGoogle Scholar
K. B. Athreya, P. E. Ney. Branching processes. Springer-Verlag, Berlin, 1972.
P. Auger. Dynamics and Thermodynamics in Hierarchically Organized Systems, Applications in Physics, Biology and Economics. Pergamon Press, Oxford, 1989.
Auger, P. Roussarie, R.. Complex ecological models with simple dynamics: from individuals to populations . Acta Biotheoretica, 42 (1994), 111-136.CrossRefGoogle Scholar
Auger, P. Poggiale, J.C.. Aggregation and Emergence in Systems of Ordinary Differential Equations . Mathematical Computer Modelling, 27 (1998), 1-22.CrossRefGoogle Scholar
Auger, P., Rachid, M, Tanmay, C., Gauthier, S., Maurice, T. Joydev, C.. Effects of a disease affecting a predator on the dynamics of a predator-prey system . Journal of theoretical biology, 258 (2009), 344-351.CrossRefGoogle ScholarPubMed
Auger, P., Lett, C.. Integrative Biology: Linking Levels of Organization . Comptes Rendus de l’Académie des Sciences Biologies, 326 (2003):517-522. CrossRefGoogle ScholarPubMed
Auger, P., Bravo de la Parra, R., Poggiale, J.C., Sánchez, E. Sanz, L.. Aggregation methods in dynamical systems variables and applications in population and community dynamics . Physics of Life Reviews, 5 (2008), 79-105.CrossRefGoogle Scholar
Berglund, N. Gentz, B.. Geometric singular perturbation theory for stochastic differential equations . J. Diff. Equat., 191 (2003), 1-54.CrossRefGoogle Scholar
Biggins, J.D., Cohn, H. Nerman, O.. Multi-type branching in varying environment . Stoc. Proc. Appl., 83 (1999), 357-400.CrossRefGoogle Scholar
Blasco, A., Sanz, L., Auger, P., Bravo de la Parra, R.. Linear Discrete Population Models with Two Time Scales in Fast Changing Environments I: Autonomous Case. Acta Biotheoretica, 49 (2001), 261-276. CrossRefGoogle ScholarPubMed
Blasco, A., Sanz, L., Auger, P. Bravo de la Parra, R.. Linear Discrete Population Models with Two Time Scales in Fast Changing Environments II: Non Autonomous Case . Acta Biotheoretica, 1 (2002), 15-38.CrossRefGoogle Scholar
Blasco, A., Sanz, L., Bravo de la Parra, R.. Approximate reduction of multiregional birth-death models with fast migration . Mathematical and Computer Modelling, 36 (2002), 47-65. CrossRefGoogle Scholar
Block, G. L Allen, L. J. S.. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models . Bull. Math. Bio., 62 (2000), 199-228.CrossRefGoogle ScholarPubMed
Bravo, R., Auger, P. Sánchez, E.. Aggregation methods in discrete Models , J. Biol. Sys., 3 (1995), 603-612.CrossRefGoogle Scholar
Bravo de la Parra, R., Sánchez, E., Arino, O. Auger, P.. A Discrete Model with Density Dependent Fast Migration . Mathematical Biosciences, 157 (1999), 91-110.CrossRefGoogle ScholarPubMed
Caswell, H., Fujiwara, M. Brault, S.. Declining survival probability threatens the North Atlantic right whale . Proc. Natl. Acad. Sci. USA, 96 (1999), 3308-3313.CrossRefGoogle ScholarPubMed
H. Caswell. Matrix population models (2 nd ed.). Sinauer Associates, Sunderland, Massachusetts, 2001.
Charles, S., Bravo de la Parra, R., Mallet, J.P., Persat, H. Auger, P.. Population dynamics modelling in an hierarchical arborescent river network: an attempt with Salmo trutta . Acta Biotheoretica, 46 (1998), 223-234.CrossRefGoogle Scholar
Charles, S., Bravo de la Parra, R. , Mallet, J.P., Persat, H., Auger, P.. A density dependent model describing Salmo trutta population dynamics in an arborescent river network: effects of dams and channelling . C. R. Acad. Sci. Paris, Sciences de la vie, 321 (1998), 979-990. Google Scholar
Charles, S., Bravo de la Parra, R., Mallet, J.P., Persat, H. Auger, P.. Annual spawning migrations in modeling brown trout population dynamics inside an arborescent river network . Ecological Modelling, 133 (2000), 15-31.CrossRefGoogle Scholar
Chaumot, A., Charles, S., Flammarion, P., Auger, P.. Do Migratory or Demographic Disruptions Rule the Population Impact of Pollution in Spatial Networks? . Theoretical Population Biology, 64 (2003), 473-480. CrossRefGoogle ScholarPubMed
Cohen, J. E.. Ergodicity of Age Structure in Populations with Markovian Vital Rates, II, General States . Advances in Appl. Probability, 9 (1977), 18-37.CrossRefGoogle Scholar
Cohen, J. E.. Ergodics Theorems of Demography . Bulletin of the American Mathematical Society N.S., 1 (1979), 275-295.CrossRefGoogle Scholar
J. E. Cohen. Multiregional age structured populations with changing vital rates: weak and strong stochastic ergodic theorems. In Land, K.C., A. Rogers editors. Multiregional mathematical demography. Academic Press, New York, 477-503, 1982.
Cohen, J.E., Christensen, S.W. Goodyear, C.P.. A stochastic age-structured model of Striped Bass (Morone saxatilis) in the Potomac River . Can. J. Fish. Aquat. Sci., 40 (1983), 2170-2183.CrossRefGoogle Scholar
Furstenberg, H. Kesten, H.. Products of Random Matrices . Ann. Math. Statist. 31 (1960), 457-469.CrossRefGoogle Scholar
Gard, T.C.. Aggregation in stochastic ecosystem models . Ecol. Modelling, 44 (1988), 153-164.CrossRefGoogle Scholar
P. Haccou, P. Jagers, V. Vatutin. Branching processes: Variation, growth, and extinction of populations, Cambridge University Press, 2005.
T. Harris. The theory of branching processes, Springer-Verlag, Berlín, 1963.
Heyde, C.C., Cohen, J. E.. Confidence Intervals for Demographic Projections Based on Products of Random Matrices. Theoretical Population Biology 27 (1985), 120-153. CrossRefGoogle ScholarPubMed
K. E. Holsinger. Demography and extinction in small populations, in: Genetics, demography and the viability of fragmented populations, eds. A. Young, G. Clarke, Cambridge University Press, 2000.
R. Horn, C. Johnson. Matrix Analysis. Cambridge Univ. Press, 1985.
Iwasa, Y., Andreasen, V. Levin, S.. Aggregation in model ecosystems I: Perfect Aggregation . Ecological Modeling, 37 (1987), 287-302.CrossRefGoogle Scholar
Joffe, A., Spitzer, F.. On multitype branching processes with ρ ≤ 1. Journal of Mathematical Analysis and Its Applications, 19 (1967), 409-430. CrossRefGoogle Scholar
Khaladi, M., Grosbois, V. Lebreton., J. D. An explicit approach to evolutionarily stable dispersal strategies with a cost of dispersal . Nonlinear Anal.: Real World Appl., 1 (2000), 137144.CrossRefGoogle Scholar
M. Kimmel, D.E. Axelrod. Branching Processes in Biology, Springer, New York, 2002.
F. Klebaner, Population Size Dependent Processes. In: Branching Processes: Variation, Growth and Extinction of Populations, P. Haccou, P. Jagers and V.A. Vatutin, 133-135, Cambridge University Press, 2005.
Legendre, S., Clobert, J., P. Moller, A. Sorci, G.. Demographic stochasticity and social mating system in the process of extinction of small populations: the case of passerines introduced to New Zealand . The American Naturalist, 153 (1999), 449-463.CrossRefGoogle ScholarPubMed
Lett, C., Auger, P. Bravo de la Parra, R.. Migration Frequency and the Persistence of Host-Parasitoid Interactions . Journal of Theoretical Biology, 221 (2003), 639-654.CrossRefGoogle ScholarPubMed
Lett, C., Auger, P. Fleury, F.. Effects of asymmetric dispersal and environmental gradients on the stability of host-parasitoid systems . Oikos, 109 (2005), 603-613.CrossRefGoogle Scholar
Liaw, K.L.. Multistate dynamics: the convergence of an age-by-region population system . Environment and Planning A, 12 (1980), 589-613.CrossRefGoogle Scholar
L. Liaw. Spatial Popuylation Dynamics. In Migration and Settlement: A multiregional comparative study; A. Rogers, Willekens eds, 419-455. Dordrecht, D. Reidel, 1986.
Marvá, M., Sánchez, E., Bravo de la Parra, R. Sanz, L.. Reduction of slow–fast discrete models coupling migration and demography . Journal of Theoretical Biology, 258 (2009), 371-379.CrossRefGoogle ScholarPubMed
C.J. Mode. Multitype Branching Processes. Theory and Applications. American Elsevier Publishing Co., Inc., New York, 1971.
Rincón, M. A., Alonso, J.A. Sanz, L.. Supercritical multiregional stochastic models with fast migration . Acta Biotheoretica, 57 (2009), 479-500.CrossRefGoogle ScholarPubMed
Rogers, A.. Shrinking large-scale population projection models by aggregation and decomposition . Environment and Planning A, 8 (1976), 515-541. CrossRefGoogle Scholar
A. Rogers. Multiregional Demography, Chichester, New York, 1995.
Saboia, J. M.. Arima models for birth forecasting . Journal of the American Statistical Association, 72 (1977), 264-270.CrossRefGoogle Scholar
Sánchez, E., Bravo de la Parra, R., Auger, P.. Linear discrete models with different time scales . Acta Bio., 43 (1995), 465-479. Google Scholar
Sanz, L. Bravo de la Parra, R.. Variables Aggregation in Time Varying Discrete Systems . Acta Biotheoretica, 46 (1998), 273-297.CrossRefGoogle Scholar
Sanz, L. Bravo de la Parra, R.. Variables aggregation in a time discrete linear model . Math. Biosc. 157 (1999), 111-146.CrossRefGoogle Scholar
Sanz, L. Bravo de la Parra, R.. Time scales in stochastic multiregional models . Nonlinear Analysis: Real World Applications, 1 (2000), 89-122.CrossRefGoogle Scholar
Sanz, L. Bravo de la Parra, R.. Time scales in a non autonomous linear discrete model . Mathematical Models and Methods in Applied Sciences, 11 (2001), 1-33.CrossRefGoogle Scholar
Sanz, L., Bravo de la Parra, R.. Approximate Reduction Techniques in Population Models with Two Time Scales: Study of the Approximation , Acta Biotheoretica, 50 (2002), 297-322. CrossRefGoogle Scholar
Sanz, L., Blasco, A. and Bravo de la Parra, R., Approximate reduction of Galton-Watson processes with two time scales, Mathematical Models and Methods in Applied Sciences 13:491-525, 2003. CrossRefGoogle Scholar
Sanz, L. Bravo de la Parra, R.. Approximate reduction of multiregional models with environmental stochasticity . Mathematical Biosciences, 206 (2007), 134-154.CrossRefGoogle ScholarPubMed
Sanz, L., Bravo de la Parra, R., Sánchez, E.. Approximate Reduction of Non-Linear Discrete Models with Two Time Scales . Journal of Difference Equations and Applications, 14 (2008), 607-627. CrossRefGoogle Scholar
G.W. Stewart, J.I. Guang Sun. Matrix Perturbation Theory, Academic Press, Boston, 1990.
Sykes, Z. M.. Some stochastic versions of the matrix model for population dynamics . J. Amer. Statist. Assoc., 64 (1969), 111-130.CrossRefGoogle Scholar
Nguyen-Huu, T., Lett, C., Auger, P. Poggiale, P. J.C.. Spatial synchrony in host-parasitoid models using aggregation of variables . Mathematical Biosciences, 203 (2006), 204-221. CrossRefGoogle Scholar
Nguyen-Huu, T., Auger, P., Lett, C., Marvá, M.. Emergence of global behaviour in a host-parasitoid model with density-dependent dispersal in a chain of patches . Ecological Complexity, 5 (2008), 9-21. CrossRefGoogle Scholar
Tuljapurkar, S., Orzack, S.. Population dynamics in variable environments. I. Long-run growth rates and extinction . Theor. Popul. Biol., 18 (1980) 314342. CrossRefGoogle Scholar
Tuljapurkar, S.. Demography in stochastic environments. I. Exact distributions of age structure . J. Math. Biol., 19 (1984), 335-350.CrossRefGoogle ScholarPubMed
S. Tuljapurkar. Population Dynamics in Variable Environments, Springer-Verlag, Berlin, 1990.
S. Tuljapurkar, H. Caswell (eds). Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, Chapman and Hall, New York, 1997.
Wang, G., Edge, W. D. Wolff, J. O.. Demographic uncertainty in ecological risk assessments . Ecological Modelling, 136 (2001), 95-102.CrossRefGoogle Scholar