No CrossRef data available.
Published online by Cambridge University Press: 23 January 2015
The following striking identities
are the cases n = 1,2,3,4 of a remarkable family given by G.J. Dostor [1]:
where m = n(2n + 1), and n = 1, 2, … The case m = −n is trivial. If m ≠ −n there are n + 1 squares of consecutive integers on the left and n on the right. We will treat the last term (m + n)2 on the left differently, and refer to it as a transition term relating two sums of squares of n consecutive integers.