Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T15:42:06.670Z Has data issue: false hasContentIssue false

Random walks arising from a Fibonacci's-rabbits scenario

Published online by Cambridge University Press:  13 March 2015

Martin Griffiths*
Affiliation:
Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Knott, R., Fibonacci numbers and nature, accessed December 2014 at http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html Google Scholar
2. Grimmett, G. and Stirzaker, D., Probability and random processes (3rd edn.), Oxford University Press (2001).Google Scholar
3. Benjamin, A. T. and Quinn, J. J., Proofs that really count, Mathematical Association of America (2003).Google Scholar
4. Burton, D.M., Elementary number theory, McGraw-Hill (1998).Google Scholar
5. Knuth, D. E., The art of computer programming, Volume 1, Addison-Wesley (1968).Google Scholar
6. Haggarty, R., Fundamentals of mathematical analysis, Addison-Wesley (1989).Google Scholar
7. Wrede, R. C. and Spiegel, M. R., Schaum's outline of advanced calculus (3rd edn.), McGraw-Hill (2010).Google Scholar
8. Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete mathematics (2nd edn.), Addison-Wesley (1998).Google Scholar
9. Knott, R., Fibonacci and Golden Ratio Formulae, accessed December 2014 at http://www.maths.surrey.ac.Uk/hosted-sites/R.Knott/Fibonacci/fibFormulae.html Google Scholar
10. Jones, J. P., Diophantine representation of the Fibonacci numbers, Fibonacci Quarterly, 13 (1975) pp. 8488.Google Scholar