Article contents
A proof of Lester’s Theorem
Published online by Cambridge University Press: 01 August 2016
Extract
The object of this note is to draw readers’ attention to a very new theorem in the Euclidean geometry of the triangle and to provide a straightforward Cartesian proof. This remarkable theorem, due to Lester, asserts that in any scalene triangle the two Fermat points, the nine-point centre and the circumcentre are concyclic. Lester’s original computer-assisted discovery and proof make use of her theory of ‘complex triangle coordinates’ and ‘complex triangle functions’ as expounded in, and . A proof has also been given by Trott using the advanced concept of Grobner bases in the reduction of systems of polynomial equations to ‘diagonal’ form. Trott’s work uses the computer algebra system Mathematica as an essential tool and he also provides an animation of the Lester circle as one vertex of the triangle is varied. Further information on the configuration is given in.
- Type
- Articles
- Information
- Copyright
- Copyright © The Mathematical Association 2001
References
- 7
- Cited by