No CrossRef data available.
Article contents
On the Diophantine equation
Published online by Cambridge University Press: 01 August 2016
Extract
In this article we discuss two main theorems relating to two different decompositions of the fraction r/n as a sum of three fractions of numerator one. Each decomposition is associated with three positive integers a, b, m such that m is a divisor of an + b. Through this discussion we devise a procedure to find values of a, b and m for a given n.
- Type
- Articles
- Information
- Copyright
- Copyright © The Mathematical Association 2007
References
1.
Erdős, P. and Graham, R.L.
Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique de Genève 28 (1980) pp. 30–44.Google Scholar
3.
Clifton-Everest, C. Luz
Fracçôes Egipcias, Bol. Soc. Port. Mat. 50 (May 2004) pp. 45–78.Google Scholar
4.
Clifton-Everest, C. Luz
Errata ao meu artigo “Fracçôes Egipcias”, Bol. Soc. Port. Mat. 51 (October 2004) p. 47.Google Scholar
6.
Webb, W. A.
Rationals not expressible as a sum of three unit fractions, Elemente der Mathematik
29 (1974) pp. 1–6.Google Scholar
7.
Sierpinski, W.
Elementary theory of numbers, Monografie Matematyczne 42, Warszawa (1964).Google Scholar
8.
Obláth, R.
Sur l’équation diophantienne 4/n = 1/x
1 + 1/x
2 + 1/x
3
, Mathesis
59 (1950) pp. 308–316.Google Scholar