Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:52:29.087Z Has data issue: false hasContentIssue false

On Napoleon triangles and propeller theorems

Published online by Cambridge University Press:  01 August 2016

Zvonko Čerin*
Affiliation:
Kopernikova 7, 10010 Zagreb, Croatia. email: [email protected]

Extract

In this paper we shall consider two situations in triangle geometry when equilateral triangles appear and then show that they are closely related.

In the first (known as the Napoleon theorem) equilateral triangles BCAT, CABT, and ABCT, are built on the sides of an arbitrary triangle ABC and their centroids are (almost always) vertices of an equilateral triangle ANBNCN (known as a Napoleon triangle of ABC; see Figure 1).

Type
Articles
Copyright
Copyright © The Mathematical Association 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bankoff, L., Erdôs, P., and Klamkin, M., The asymmetric propeller, Math. Mag. 46 (1973), pp. 270272.CrossRefGoogle Scholar
2. Hahn, L., Complex numbers and geometry, Math. Assoc. America, (1994).Google Scholar
3. Martini, H., On the theorem of Napoleon and related topics, Math. Semesterber 43 (1996), pp. 4764.CrossRefGoogle Scholar
4. Gardner, M., The Asymmetric Propeller, College Math. J. 30 (1999), pp. 1822.Google Scholar
5. Čerin, Z., On Propellers from Triangles, Beiträge zur Algebra und Geometrie 42 (2001), pp. 575582.Google Scholar
6. Čerin, Z., Napoleonovi trokuti i Dokovicev teorem, Zbornik radova, Prvi kongres nastavnika matematike, Hrvatsko Matematidko DruStvo, Zagreb (2000), pp. 5562.Google Scholar
7. Mitrinovic, Dragoslav S. (uz suradnju Joza Ulöara i Vladimira Devidéa), Zbornik matematickih problema III, Zavod za izdavanje udzbenika NRS, Beograd (1960).Google Scholar
8. Tosic, Dobrilo i Dokovié, Dragomir, Denk-ov problem i neke njegove generalizacije, Uvodenje mladih u naučni rad II, Matematička biblioteka 19, Beograd (1961), pp. 109113.Google Scholar