No CrossRef data available.
Article contents
On Napoleon triangles and propeller theorems
Published online by Cambridge University Press: 01 August 2016
Extract
In this paper we shall consider two situations in triangle geometry when equilateral triangles appear and then show that they are closely related.
In the first (known as the Napoleon theorem) equilateral triangles BCAT, CABT, and ABCT, are built on the sides of an arbitrary triangle ABC and their centroids are (almost always) vertices of an equilateral triangle ANBNCN (known as a Napoleon triangle of ABC; see Figure 1).
- Type
- Articles
- Information
- Copyright
- Copyright © The Mathematical Association 2003
References
1.
Bankoff, L., Erdôs, P., and Klamkin, M., The asymmetric propeller, Math. Mag.
46 (1973), pp. 270–272.CrossRefGoogle Scholar
3.
Martini, H., On the theorem of Napoleon and related topics, Math. Semesterber
43 (1996), pp. 47–64.CrossRefGoogle Scholar
5.
Čerin, Z., On Propellers from Triangles, Beiträge zur Algebra und Geometrie
42 (2001), pp. 575–582.Google Scholar
6.
Čerin, Z., Napoleonovi trokuti i Dokovicev teorem, Zbornik radova, Prvi kongres nastavnika matematike, Hrvatsko Matematidko DruStvo, Zagreb (2000), pp. 55–62.Google Scholar
7.
Mitrinovic, Dragoslav S. (uz suradnju Joza Ulöara i Vladimira Devidéa), Zbornik matematickih problema III, Zavod za izdavanje udzbenika NRS, Beograd (1960).Google Scholar
8.
Tosic, Dobrilo i Dokovié, Dragomir, Denk-ov problem i neke njegove generalizacije, Uvodenje mladih u naučni rad II, Matematička biblioteka
19, Beograd (1961), pp. 109–113.Google Scholar