No CrossRef data available.
Article contents
On a simple set of integers
Published online by Cambridge University Press: 01 August 2016
Extract
During an investigation on some Diophantine systems, we were led to consider the following set
where x, y, a, b, c are indeterminate integers.
From elementary algebra we know that, if they exist, x and y are the roots of the quadratic equation
- Type
- Articles
- Information
- Copyright
- Copyright © The Mathematical Association 2009
References
1.
Lucas, Edouard, Théorie des nombres, Gauthier-Villars, Paris (1891), p. 128, Exemple V (as reprinted by Jacques Gabay, Paris, 1991).Google Scholar
3.
Dickson, Leonard E., History of the theory of numbers, Carnegie Institution of Washington, Washington (1920) 2, pp. 705–711.Google Scholar
4.
Bini, U., Sur quelques questions d’analyse indéterminée, Mathesis, 3ème série, 9, (1909) pp. 113–118.Google Scholar
5. Tito Piezas III: Ramanujan 6-10-8 identity at http:// mathworld.wolfram.com/Ramanujan6-10-8Identity.html
Google Scholar
6. Tito Piezas III: Hirschhorn 3-5-7 identity at http:// mathworld.wolfram.com/Hirschhorn3-7-5Identity.html
Google Scholar
7.
Hirschhorn, M.D., Two or three identities of Ramanujan, Amer. Math. Monthly, 105-1 (1998) pp. 52–55.Google Scholar
8.
Martin, Artemas, A rigorous method for finding biquadrate numbers whose sum is biquadrate, Deuxième Congrès International des Mathématiciens, Paris, 1900, pp. 239–248.Google Scholar
9.
Euler, L., Solutio generalis quorundam problematum Diophanteorum, quae vulgo nonnisi solutiones speciales admitiere videntur, Opera Omnia, Series 1, Volume 2, pp. 428–458.Google Scholar
11.
Euler, L., Supplementum quorundam theorematum Arithmeticorum quae in nonnullis demonstrationibus supponuntur, Opera Omnia, Series 1, Volume 2, pp. 556–575.Google Scholar