Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T09:00:50.133Z Has data issue: false hasContentIssue false

Equality of areas among the ears of the Routh triangle

Published online by Cambridge University Press:  21 June 2021

Mowaffaq Hajja*
Affiliation:
Philadelphia University (Jordan), P. O. Box 388, Al-Husun, Irbid21510, Jordan e-mail: [email protected], [email protected]

Extract

Figure 1 below shows a triangle ABC and three cevians AX, BY and CZ with intersection points

Type
Articles
Copyright
© Mathematical Association 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fox, M., Solution to Problem 101.F, Math. Gaz. 102 (March 2018) pp. 177-178.Google Scholar
Giblin, P., A note on Problem 101.F, Math. Gaz. 103 (March 2019), pp. 154155.CrossRefGoogle Scholar
Leversha, G., The geometry of the triangle, Pathways No. 2, The United Kingdom Mathematics Trust, University of Leeds (2013).Google Scholar
Coxeter, H. S. M., Introduction to geometry, John Wiley & Sons (1961).Google Scholar
Abu-Saymeh, S. and Hajja, M., In search of more triangle centres: A source of classroom projects in Euclidean geometry, Int. J. Math. Educ. Sci. Technol. 36 (2005) pp. 889912.CrossRefGoogle Scholar
Lee, H., Problem 1612, Math. Mag. 73 (2000) p. 403; Solution, ibid, 74 (2001) p. 408.Google Scholar
Andreescu, T. and Feng, Z. , USA and International Mathematical Olympiads 2003, MAA (2004). CrossRefGoogle Scholar
Embacher, F. and Humenberger, H., A note on the Stammler hyperbola, Amer. Math. Monthly 126 (2019) pp. 841844.CrossRefGoogle Scholar
Fukagawa, H. and Pedoe, D., Japanese Temple geometry problems: San Gaku, Charles Babbage Research Centre (1989).Google Scholar
Fukagawa, H. and Rothman, T., Sacred Mathematics: Japanese Temple geometry, Princeton University Press (2008).Google Scholar