Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T05:59:29.191Z Has data issue: false hasContentIssue false

Desargues, Pascal and Kirkman

Published online by Cambridge University Press:  02 March 2020

John R. Silvester*
Affiliation:
Department of Mathematics, King’s College, Strand, London WC2R 2LS e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
© Mathematical Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rotman, J. J., The theory of groups, an introduction, Allyn and Bacon (1965).Google Scholar
Hölder, O., Bildung zusammengesetzter Gruppen, Math. Ann. 46 (1895) pp. 321422.CrossRefGoogle Scholar
Todd, J. A., The ‘odd’ number six, Math. Proc. Cambridge Philos. Soc. 41 (1) (1945) pp. 6668.CrossRefGoogle Scholar
Miller, D. W., On a theorem of Hölder, Amer. Math. Monthly 65 (4) (1958) pp. 252254.Google Scholar
Janusz, G. and Rotman, J. J., Outer automorphisms of S 6, Amer. Math. Monthly 89 (6) (1982) pp. 407410.Google Scholar
Ward, J., Outer automorphisms of S 6 and coset enumeration, Math. Proc. R. Ir. Acad. 86A (1) (1986) pp. 4550.Google Scholar
Fournelle, T. A., Symmetries of the cube and outer automorphisms of S 6, Amer. Math. Monthly 100 (4) (1993) pp. 377380.Google Scholar
Conway, John and Ryba, Alex, The Pascal Mysticum demystified, Math. Intelligencer 34 (3), (2012) pp. 48, available online at https://www.researchgate.net/publication/257393571CrossRefGoogle Scholar
Salmon, George, A treatise on conic sections (6th edn.), Chelsea (1960).Google Scholar
Coxeter, H. S. M. and Greitzer, S. L., Geometry revisited, Singer (1967).CrossRefGoogle Scholar
Semple, J. G. and Kneebone, G. T., Algebraic projective geometry, Oxford (1952).Google Scholar
Hilbert, D. and Cohn-Vossen, S., Geometry and the imagination, Chelsea (1952).Google Scholar
Stewart, Ian, Galois theory (4th edn.), CRC Press (2015).Google Scholar
Pedoe, D., A course of geometry for colleges and universities, Cambridge (1970).Google Scholar
van Yzeren, Jan, A simple proof of Pascal’s hexagon theorem, Amer. Math. Monthly 100 (10) (1993) pp. 930931.CrossRefGoogle Scholar