No CrossRef data available.
Article contents
Dependence of events, revisited
Published online by Cambridge University Press: 23 August 2024
Extract
Independence is a key concept in probability. Conceptually, we think of two events as being independent if the outcome of one event doesn’t affect the outcome of the other and vice versa. Mathematically, we say that events A and B are independent if the probability that both occur is the product of the probabilities that each occurs. More precisely, P (A ∩ B) = P (A) (P (B) in which P () denotes the probability of the given event. Alternatively, we say that A and B are independent if the conditional probability that A occurs given that B has occurred, P (A | B), satisfies P (A | B) = P (A). That is, whether or not B occurs does not affect whether or not A occurs.
- Type
- Articles
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Authors, 2024. Published by Cambridge University Press on behalf of The Mathematical Association