No CrossRef data available.
Article contents
A Class of Configurations and the Commutativity of Multiplication
Published online by Cambridge University Press: 03 November 2016
Extract
A configuration is a finite collection of points, lines and planes with a number of each on each; any one of the three kinds may be empty.
- Type
- Research Article
- Information
- Copyright
- Copyright © Mathematical Association 1956
References
2.
Coxeter, H. S. M., “Self-Dual Configurations and Regular Graphs”, Bull. Amer. Math. Soc., Vol. 56 (1950), pp. 413-455.CrossRefGoogle Scholar
3.
Möbius, A. F., Kann Von Zwei dreiseitigen pyramiden eine jede in Bezug auf die andere um-und eingeschrieben zugleich heissen? Crelle 3 (1828).Google Scholar
4.
Reidemeister, K., “Zur Axiomatik der 3-dimensionalen projektive Geometrie”, Jhbr. Deutsch. Math. Verein, 38 (1929), p. 71.Google Scholar