Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T08:46:34.284Z Has data issue: false hasContentIssue false

An extension of the six-point circle theorem for a generalised Van Aubel configuration

Published online by Cambridge University Press:  12 October 2022

Dario Pellegrinetti
Affiliation:
Kirchstr. 16, 64283 Darmstadt, Germany e-mail: [email protected]
Michael de Villiers
Affiliation:
Mathematics Education (RUMEUS), Stellenbosch University, Private Bag XI, 7602 Matieland, South Africa e-mail: [email protected]

Extract

We deal with an extension of the six-point circle theorem for the quadrilateral [1] when the Van Aubel configuration is generalised as in [2] and [3]: similar parallelograms are constructed, all internally or all externally, on the sides of a given quadrilateral.

Type
Articles
Copyright
© The Authors, 2022. Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pellegrinetti, D., The six-point circle for the quadrangle, International Journal of Geometry, 2 (October 2019) pp. 513.Google Scholar
de Villiers, M., Generalising Van Aubel using duality, Mathematics Magazine, 73(4) (October 2000) pp. 303307.Google Scholar
Silvester, J., Extensions of a theorem of Van Aubel, Math. Gaz., (March 2006) pp. 212.Google Scholar
Van Aubel, H., Note concernant les centres des carrés construits sur les cotés d’un polygon quelconque, Nouv. Corresp. Math., 4 (1878) pp. 4044.Google Scholar
Coxeter, H. S. M., Greitzer, S. L., Geometry revisited, The Mathematical Association of America, New Mathematical Library (1967).Google Scholar
van Tienhoven, C., Encyclopedia of quadri-figures (EQF), available at https://www.chrisvantienhoven.nl/mathematics/encyclopedia Google Scholar
Altshiller-Court, N., College geometry, Dover (1952).Google Scholar
de Villiers, M., Dual generalizations of Van Aubel’s theorem, Math. Gaz. (November 1998) pp. 405412.Google Scholar
Gonin, A. A., Archer, I. J. M., Slabber, G. P. L., Nel, G. De La R., Modern graded mathematics for std 9 and 10 (new syllabus), Nasou (1978).Google Scholar
Euclid, The elements, proposition 21 & 22, Book III.Google Scholar
DeTemple, D., Harold, S., A round-up of square problems, Mathematics Magazine, 16(1) (1996) pp. 1527.Google Scholar
de Villiers, M., Twin circles for a Van Aubel configuration involving similar parallelograms, available at http://dynamicmathematicslearning.com/van-aubel-twin-circles.html Google Scholar