Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T05:13:27.015Z Has data issue: false hasContentIssue false

Abstract Algebra

Published online by Cambridge University Press:  03 November 2016

Extract

The algebra taught at present in schools and colleges and discussed in recent reports is essentially that of Euler and Chrystal as regards both content and method. Must this tradition continue? It is hoped that this short note will suggest the contrary and indicate the possibility of incorporating the ideas and methods of modern algebra in elementary teaching. To this end attention will be drawn to some of the simpler concepts of the subject.

Type
Research Article
Copyright
Copyright © Mathematical Association 1940

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References for Definitions, Proofs, and Extensions

1. Albert, A. A. Modern Higher Algebra, 1937, Chicago.Google Scholar
2. Birkhoff, G Proc. Camb. Phil. Soc., 1933, 441464,CrossRefGoogle Scholar
3. Birkhoff, G Proc. Camb. Phil. Soc., 1931, 115122,Google Scholar
4. Birkhoff, G Proc. Camb. Phil. Soc., 200, 1985,Google Scholar
5. Birkhoff, G Proc. Camb. Phil. Soc., 433464 Google Scholar
6. Birkhoff, G Annals of Math., 6. 1935, 713748.Google Scholar
7. Carathéodory, C. Conformal representation, 1932, Camb. Univ Tracts.Google Scholar
8. Dickson, L. E. Algebras and their Arithmeetics, 1923, Chicago.Google Scholar
9. Dubreil, P et Dubreil-Jacobin, M.-L.: Journal de Math., 1939, 6395.Google Scholar
10. Forsyth, A. K. Theory of Functions, Cambridge.Google Scholar
11. Ford, L.R. Automorphic Functions, McGraw-Hill.Google Scholar
12. Hausdorff, F. Mengenlehre, 1927, Berlin.Google Scholar
13. MacMahon, P. Combinatory Analysis, Cambridge.Google Scholar
14. Menger, F N Annals of Maths., 1936, 456483.CrossRefGoogle Scholar
15. Murnaghan, F D. The theory of group representations, 1938, John Hopkins Press.Google Scholar
16. Ore, O.: L’Algèbre Abstraite, 1936, Herrnann, Paris.Google Scholar
17. Ore, O. Annals of Maths., 1935, 406437, 1936, 266-292.CrossRefGoogle Scholar
18. Ore, O. Duke Math. Journal, 1936, 581586, 1937, 149-174; 1938, 247-269.Google Scholar
19. Ore, O. Trans. Am. Math. Soc., 1937, 266273.Google Scholar
20. Ore, O. Bull. Am. Math. Soc., 1938, 801806.CrossRefGoogle Scholar
21. Ore, O. Congrès des Math. à Helsingfors, 1938, 28.Google Scholar
22. Ore, O. Congrès Int. des Math., Oslo, 1936, 297307.Google Scholar
23. Richardson, A. R. Proc. Edin. Math. Soc., 1939.Google Scholar
24. Stone, M. H. Am. Journal Math., 1937, 506511.CrossRefGoogle Scholar
25. Stone, M. H. Proc. Sat. Acad., 1934, 107202.Google Scholar
26. Ward, M. Duke Math. Journal, 1937, 627636.Google Scholar
27. Ward, M. Duke Math. Journal, 1939, 357371.Google Scholar
28. Ward, M. Annals of Maths., 1938, 558568,CrossRefGoogle Scholar
29. Ward, M. Annals of Maths., 1939, 328338.CrossRefGoogle Scholar
30. Ward, M. Bulletin Am. Math. Soc., 1939, 448451.CrossRefGoogle Scholar
31. Ward, M. and Dilworth, R. P Trans. Am. Math. Soc., 1939, 335354.CrossRefGoogle Scholar
32. Winger, A.: Am. Math. Monthly, 1930.Google Scholar