Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T15:40:09.031Z Has data issue: false hasContentIssue false

Sine, cosine and exponential integrals

Published online by Cambridge University Press:  10 July 2015

G. J. O. Jameson*
Affiliation:
Dept. of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lord, Nick, Intriguing integrals: an Euler-inspired odyssey, Math. Gaz. 91 (November 2007) pp. 415427.CrossRefGoogle Scholar
2.Walker, P. L., The theory of Fourier series and integrals, John Wiley (1986).Google Scholar
3.Trainin, J., Integrating expressions of the form and others, Math. Gaz. 94 (July 2010) pp. 216223.Google Scholar
4.Jameson, Graham, Lord, Nick and McKee, James, An inequality for Si (x), Math. Gaz. 99 (March 2015) pp. 133139.Google Scholar
5.Ferrar, W. L., Integral calculus, Oxford University Press (1958).Google Scholar
6.Jeffrey, C.Lagarias, Euler’s constant: Euler’s work and modern developments, Bull. American Math. Soc. 50 (2013) pp. 527628.Google Scholar
7.Temme, N. M., Exponential, logarithmic, sine and cosine integrals, (2014), available at http://dlmf.nist.govGoogle Scholar
8.Titchmarsh, E. C., The theory of functions, Oxford University Press (1939).Google Scholar
9.Boros, George and Moll, Victor H., Irresistible integrals, Cambridge University Press (2004).Google Scholar
10.Gourdon, Xavier and Sebah, Pascal, The Euler constant γ, (2003), available at http://numbers.computation.free.fr/Constants/constants.htmlGoogle Scholar
11.Burckel, R. B., An Introduction to classical complex analysis, vol. 1, Academic Press (1979).Google Scholar