Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T12:55:20.853Z Has data issue: false hasContentIssue false

The number of preference orderings: a recursive approach

Published online by Cambridge University Press:  13 March 2015

Ben Eggleston*
Affiliation:
Department of Philosophy, University of Kansas, Lawrence, KS 66045, USA e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chandon, J. L., Lemaire, J., and Pouget, J., Dénombrement des quasi-ordres sur un ensemble fini, Mathématiques et Sciences Humaines 62 (1978) pp. 6180.Google Scholar
2. Riordan, J., An introduction to combinatorial analysis, John Wiley & Sons, Inc., New York (1958).Google Scholar
3. Weisstein, E. W., Stirling number of the second kind, MathWorld, accessed December 2014 at http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html Google Scholar
4. Weisstein, E. W., Binomial coefficient, MathWorld, accessed December 2014 at http://mathworld.wolfram.com/BinomialCoefficient.html Google Scholar
5. Barthelemy, J. P., An asymptotic equivalent for the number of total preorders on a finite set, Discrete Mathematics 29 (1980) pp. 311313.Google Scholar
6. Bailey, R. W., The number of weak orderings of a finite set, Social Choice and Welfare 15 (1998) pp. 559562.Google Scholar
7. Sloane, N. J. A., Online encyclopedia of integer sequences, accessed December 2014 at http://weis.org/A000670 Google Scholar
8. Aitken, A. C., A problem in combinations, Edinburgh Mathematical Notes 28 (1933) pp. xviiixxiii.Google Scholar
9. Comtet, L., Advanced combinatorics: the art of finite and infinite expansions (revised edition), D. Reidel Publishing Company, Dordrecht, Holland (1974).CrossRefGoogle Scholar
10. Kreweras, G., Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963) pp. 3141.Google Scholar