Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:00:07.358Z Has data issue: false hasContentIssue false

Minimal area of a bicentric quadrilateral

Published online by Cambridge University Press:  10 July 2015

Martin Josefsson*
Affiliation:
Västergatan, 25d, 285 37 Markaryd, Sweden e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Josefsson, M., Maximal area of a bicentric quadrilateral, Forum Geom., 12 (2012) pp. 237241.Google Scholar
2.Radić, M., Certain inequalities concerning bicentric quadrilaterals, hexagons and octagons, Journal of Inequalities in Pure and Applied Mathematics, Volume 6, Issue 1, Article 1 (2005).Google Scholar
3.Bencze, M.Drăgan, M., Some inequalities in bicentric quadrilaterals, Mathematica, Acta Universitatis Sapientiae, 5 (2013) pp. 2038.Google Scholar
4.Pop, O. T.Minculete, N. and Bencze, M., An introduction to quadrilateral geometry, Editura Didactică şi Pedagogică, Bucharest, Romania (2013).Google Scholar
5.Yun, Z., Euler’s inequality revisited, Mathematical Spectrum, 40 (2008) pp. 119121.Google Scholar
6.Blundon, W. J., Eddy, R. H., Problem 488, Nieuw Arch. Wiskunde, 26 (1978) pp. 231, 465466.Google Scholar
7.Tóth, L. Fejes, Inequalities concerning polygons and polyedra, Duke Math. J. 15 (1948) pp. 817822.Google Scholar
8.Josefsson, M., A new proof of Yun’s inequality for bicentric quadrilaterals, Forum Geom. 12 (2012) pp. 7982.Google Scholar
9.Alsina, C. and Nelsen, R. B., Icons of mathematics. An exploration of twenty key images, Mathematical Association of America (2011) pp. 130, 287.Google Scholar
10.Hoehn, L., Circumradius of a cyclic quadrilateral, Math. Gaz. 84 (March 2000) pp. 6970.Google Scholar