Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T15:43:45.802Z Has data issue: false hasContentIssue false

Length, area and volume

Published online by Cambridge University Press:  03 November 2016

C. A. Rogers*
Affiliation:
University College, London WC1E 6BT

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © Mathematical Association 1973 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Banach, S., Sur le problème de la mesure, Fundam. Math. 4, 733 (1923).Google Scholar
2. Besicovitch, A. S., On the definition of the area of a surface by means of inscribed polyhedra, J. Lond. math. Soc. 19, 138141 (1944).Google Scholar
3. Carathéodory, C., Über das lineare Mass von Punktmengen—eine Verallgemeine-rung des Lãngenbegriff, Nachr. Ges. Wiss. Göttingen 404426 (1914).Google Scholar
4. Eggleston, H. G., Problems in Euclidean Space, Pergamon (1957).Google Scholar
5. Federer, H., Geometric Measure Theory. Springer (Berlin, 1969).Google Scholar
6. Hausdorfif, F., Mengenlehre (1st edition Leipzig, 1914); reprinted Chelsea Publishing Company (New York, 1949).Google Scholar
7. Hausdorff, F., Dimension und ãusseres Mass, Math. Annln 79, 157179 (1919).Google Scholar
8. Meschkowski, H., Unsolved and Unsolvable Problems in Geometry. Oliver and Boyd (1966).Google Scholar
9. Neuman, J. von, Zur allgemeinen Théorie des Masses, Fundam. Math. 13, 73116 (1929).Google Scholar
10. Rogers, C. A., Hausdorff Measures. Cambridge University Press (1970).Google Scholar
11. Solovay, R. M., A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92, 155 (1970).Google Scholar