Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T10:21:54.782Z Has data issue: false hasContentIssue false

96.06 A rational number of the form aa with a irrational

Published online by Cambridge University Press:  23 January 2015

J. Marshall Ash
Affiliation:
DePaul University, Chicago, IL 60614 USA (Research partially supported by DePaul University Faculty Summer Research Grants.)
Yiren Tan
Affiliation:
DePaul University, Chicago, IL 60614 USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Niven, I., Irrational Numbers, The Cams Mathematical Monographs, No. 11. The Mathematical Association of America. Distributed by John Wiley and Sons, Inc., New York, N.Y., 1956.Google Scholar
2. Gelfond, A. O., Sur le septième Problème de D. Hilbert, Comptes Rendus Acad. Sci. URSS Moscou 2, pp. 16, 1934.Google Scholar
3. Gelfond, A. O., Sur Ie septième Problème de Hilbert, Bull. Acad. Sci. URSS Leningrade 7, pp. 623634, 1934.Google Scholar
4. Schneider, T., Transzendenzuntersuchungen periodischer Funktionen. I. J. reine angew. Math. 172, pp. 6569, 1934.Google Scholar
5. Schneider, T., Transzendenzuntersuchungen periodischer Funktionen. II. J. reine angew. Math. 172, pp. 7074, 1934.Google Scholar
6. Kuzmin, R. O., On a new class of transcendental numbers, Izvestiya Akademii Nauk SSSR, Ser. matem. 7 (1930) pp. 585597.Google Scholar