Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T05:16:57.075Z Has data issue: false hasContentIssue false

95.28 Powers of magic matrices

Published online by Cambridge University Press:  23 January 2015

Bianca Edwards
Affiliation:
Mathematics and Computer Science Department, The College of Wooster, Wooster, OR 44691 USA
Jim Hartman
Affiliation:
Mathematics and Computer Science Department, The College of Wooster, Wooster, OR 44691 USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cammann, Schuyler, The evolution of magic squares in China, Journal of the American Oriental Society, 80, No. 2 (Apr. – Jun. 1960), pp. 116124.CrossRefGoogle Scholar
2. Stark, H. M., Introduction to number theory, Markham, Chicago, 1970.Google Scholar
3. Johnson, C. R., A matrix theoretic construction of magic squares, The American Mathematical Monthly, 79, No.9 (Nov. 1972), pp. 10041006.CrossRefGoogle Scholar
4. Chabert, J. L., Magic squares, A history of algorithms: from the pebble to the microchip, Springer-Verlag, New York, 1999, pp. 4981.CrossRefGoogle Scholar
5. Ward, James E. III, Vector spaces of magic squares, Mathematics Magazine, 53, No.2 (Mar. 1980), pp. 108111.CrossRefGoogle Scholar
6. Fox, Charles, Magic matrices, Math. Gaz., 40, (October 1956), pp. 209211.CrossRefGoogle Scholar
7. Gauthier, N., Singular matrices applied to 3 × 3 magic squares, Math. Gaz., 81, (July 1997), pp. 225230.CrossRefGoogle Scholar
8. Hill, Ray and Elzaidi, S. M., Cubes and inverses of magic squares, Math. Gaz., 80, (November 1996), pp. 565567.CrossRefGoogle Scholar
9. Rose, David M., Magic squares and matrices, Math. Gaz., 57, (February 1973), pp. 3639.CrossRefGoogle Scholar
10. Thompson, A. C., Odd magic powers, The American Mathematical Monthly, 101, No.4 (Apr. 1994), pp. 339342.Google Scholar
11. Trenkler, Götz, Another look at cubes and inverses of magic squares, Math. Gaz., 82, (July 1998), pp. 288289.CrossRefGoogle Scholar
12. van den Essen, Amo, Magic squares and linear algebra, The American Mathematical Monthly, 97, No. 1 (Jan. 1990), pp. 6062.CrossRefGoogle Scholar
13. Wardlaw, William P. and Hartman, Jim, E3440, The American Mathematical Monthly, 99, No. 10 (Dec. 1992), pp. 966967.CrossRefGoogle Scholar
14. Miller, Kenneth S., Some eclectic matrix theory, Robert E. Krieger Publishing Company, Malabar, FL, 1987.Google Scholar
15. Lenard, Andrew, A non-zero complex sequence with vanishing power-sums, Proceedings of the A.M.S. 108, Number 4(April 1990), pp. 951953.CrossRefGoogle Scholar