Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T18:01:43.473Z Has data issue: false hasContentIssue false

90.38 Another approach to the trisection problem

Published online by Cambridge University Press:  01 August 2016

José Carlos de Sousa Oliveira Santos*
Affiliation:
Departamento de Matemática Pura, Faculdade de Ciências, Rua do Campo Alegre 687, Portugal

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jacobson, N. Basic algebra I (2nd edn), Freeman, W. H. (1985).Google Scholar
2. Stewart, I. Galois theory, Chapman and Hall (1973).Google Scholar
3. Yates, R. C. The trisection problem, The National Council of Teachers of Mathematics (1971).Google Scholar
4. Brillhart, J. Filaseta, M. and Odlyzko, A. On an irreducibility theorem of A. Cohn, Can. J. Math. 33 (1981) pp. 10551059.Google Scholar