Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T18:41:40.051Z Has data issue: false hasContentIssue false

85.21 New light on some very familiar formulae

Published online by Cambridge University Press:  01 August 2016

Michael A. B. Deakin*
Affiliation:
Department of Mathematics and Statistics, Monash University, Clayton, Vic 3168, Australia. e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deakin, M. A. B., Functions of a dual or duo variable, Math. Mag. 39 (1966) pp. 215219.Google Scholar
2. Deakin, M. A. B., Are there parabolic functions?, Aust. Math. Teacher 27 (1971) pp. 136138.Google Scholar
3. Deakin, M. A. B., Pseudo-trigonometric and pseudo-harmonic functions, Int. J. Math. Ed. Sei. Tech. 11 (1980) pp. 7580.CrossRefGoogle Scholar
4. Glaister, P., Second order differential equations-a unified approach, Math. Gaz. 80 (1996) pp. 392394.CrossRefGoogle Scholar
5. Study, E., Geometrie der Dynamen, Teubner (1903) p. 205.Google Scholar
6. Brand, L., Vector and tensor analysis, Wiley (1947) pp. 6465.Google Scholar