Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T13:57:53.146Z Has data issue: false hasContentIssue false

83.50 Recent formulae for π: arctan revisited!

Published online by Cambridge University Press:  01 August 2016

Nick Lord*
Affiliation:
Tonbridge School, Kent TN9 1JP

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bailey, D. Borwein, P. and Plouffe, S. On the rapid computation of various polylogarithmic constants, included in [8], pp. 663–76.Google Scholar
2. Adamchik, V. and Wagon, S. A simple formula for π , Amer. Math. Monthly 104:9 (1997) pp. 852855.Google Scholar
3. Adamchik, V. and Wagon, S., π: a 2000-year search changes direction, Mathematica in Ed. and Res. 5:1 (1996) pp. 1119.Google Scholar
4. Blatner, D. The joy of π, Allen Lane (1997).Google Scholar
5. Chien-Lih, H. More Machin-type identities, Math. Gaz. 81 (March 1997) pp. 120121.Google Scholar
6. Wetherfield, M. Machin revisited, Math. Gaz. 81 (March 1997) pp. 121123.CrossRefGoogle Scholar
7. Lord, N. Recent calculations of π: the Gauss-Salamin algorithm, Math. Gaz. 76 (July 1992) pp. 231242.CrossRefGoogle Scholar
8. Berggren, L. Borwein, J. Borwein, P. Pi: a source book, Springer (1997).Google Scholar
9. Delahaye, J-P. Le fascinant nombre π, Belin (1997).Google Scholar