Hostname: page-component-6bf8c574d5-8gtf8 Total loading time: 0 Render date: 2025-02-22T14:39:28.934Z Has data issue: false hasContentIssue false

109.08 Stirling’s asymptotic approximations

Published online by Cambridge University Press:  17 February 2025

Allan Silberger
Affiliation:
1573 Kew Rd, Cleveland Hts, OH 44118 USA email:[email protected]
Rasul Khan
Affiliation:
Cleveland State University, e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2025 Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artin, E., The Gamma Function, Translated by Butler, Michael, published by Holt, Rinehart and Winston (1964), original German edition published in 1931.Abraham de Moivre, Wikipedia.Google Scholar
Jameson, G. J. O., A simple proof of Stirling’s formula for the gamma function, Math. Gaz., 99 (March 2015) pp. 6874.CrossRefGoogle Scholar
Khan, R. A., A probabalistic proof of Stirling’s Formula, Amer. Math. Monthly, 81 (1974) pp. 366369.CrossRefGoogle Scholar
Robbins, H., A Remark on Stirling’s Formula, Amer. Math. Monthly, 62 (1955)pp. 2629.Google Scholar
Diaconis, P., Friedman, D., An Elementary Proof of Stirling’s Formula, Amer. Math. Monthly, 93 (1986) pp. 123125.CrossRefGoogle Scholar
Michel, R., Stirling’s Formula, On, Amer. Math. Monthly, 109 (2002) pp. 388390.Google Scholar
Patin, J. M., A Very Short Proof of Stirling’s Formula, Amer. Math. Monthly. 96 (2018) pp. 4142.CrossRefGoogle Scholar
Lighthill, M. J., An Introduction to Fourier Analysis and Generalised Functions, Cambridge University Press (1958).CrossRefGoogle Scholar
Spivak, M. D., The Joy of TeX, Amer. Math. Society (1986).Google Scholar
Feller, W., An Introduction to Probability Theory and Its Applications, Wiley, New York (1968).Google Scholar