Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T16:18:44.670Z Has data issue: false hasContentIssue false

103.41 A spatial characterisation of Pascal limaçons

Published online by Cambridge University Press:  21 October 2019

Francisco Javier González Vieli
Affiliation:
Av. de Montoie 45, 1007 Lausanne, Switzerland e-mail: [email protected]
Marion Maillard
Affiliation:
Ch. du Village 1 A, 1012 Lausanne, Switzerland

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weisstein, E. W., Limaçon, Mathworld –A Wolfram Web Resource, http://mathworld.wolfram.com/Limacon.html (accessed 30.10.2018).10.3888/tmj.10.3-3CrossRefGoogle Scholar
Yates, R. C., A handbook on curves and their properties ,Edwards, J. W. Ann Arbor, (1947) https://hdl.handle.net/2027/wu.89062907043 (accessed 30.10.2018)..Google Scholar
Lockwood, E. H., A book of curves, Cambridge University Press (1961).CrossRefGoogle Scholar
Rutter, J. W., Watanabe, M., Geometry of curves, Chapman & Hall/CRC, Boca Raton, (2000).CrossRefGoogle Scholar
Salkowski, E., Darstellende Geometrie, Akademische Verlagsgesellschaft Geest und Portig, Leipzig (1955).Google Scholar
Weisstein, E. W., Viviani's Curve, Mathworld–A Wolfram Web Resource, http://mathworld.wolfram.com/VivianisCurve.html (accessed 30.10.2018).Google Scholar