Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T16:27:15.375Z Has data issue: false hasContentIssue false

102.13 Distance from the incentre of the tangential triangle of an obtuse triangle to the Euler line

Published online by Cambridge University Press:  08 February 2018

Sava Grozdev
Affiliation:
VUZF University of Finance, Business and Entrepreneurship, Gusla Street 1, 1618 Sofia, Bulgaria e-mail: [email protected]
Hiroshi Okumura
Affiliation:
Maebashi Gunma, 371-0123, Japan e-mail: [email protected]
Deko Dekov
Affiliation:
Zahari Knjazheski 81, 6000 Stara Zagora, Bulgaria e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grozdev, S. and Dekov, D., Barycentric coordinates: formula sheet, International Journal of Computer Discovered Mathematics 1(2016) no 2, pp.7582. http://www.journal-1.eu/2016-2/Grozdev-Dekov-Barycentric-Coordinates-pp.75-82.pdf Google Scholar
2. Yiu, P., Introduction to the geometry of the triangle, 2013, http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf Google Scholar
3. Weisstein, E. W., Tangential triangle, MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/ Google Scholar
4. Leversha, G., The geometry of the triangle, UKMT (2013).Google Scholar
5. Kimberling, C., Encyclopedia of Triangle Centers - ETC, http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Google Scholar