Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T16:33:06.727Z Has data issue: false hasContentIssue false

98.33 Computer-generated mathematics: points on the Kiepert hyperbola

Published online by Cambridge University Press:  25 August 2015

Sava Grozdev
Affiliation:
Institute of Mathematics and Informatics - BAS, Acad. G. Bonchev Street, bl.8, 1113 Sofia, Bulgaria e-mail: [email protected]
Deko Dekov
Affiliation:
Zahari Knjazheski 81, 6000 Stara Zagora, Bulgaria e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kiepert, L., Solution de question 864, Nouvelles Annales de Mathématiques 8 (169) pp. 4042/Google Scholar
2. Eddy, R.H. and Fritsch, R., The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle, Mathematics Magazine 67 (3) (1994) pp. 188205.Google Scholar
3. Weisstein, E.W., ‘Kiepert Hyperbola’. From Math World – A Wolfram Web Resource. http://mathworld.wolfram.com/KiepertHyperbola.html Google Scholar
4. Leversha, G., The geometry of the triangle, UKMT (2013).Google Scholar
5. Kimberling, C., Encyclopedia of Triangle Centers, 2013, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Google Scholar
6. Grozdev, S. and Dekov, D., Points on the Kiepert Hyperbola, Journal of Computer-Generated Mathematics 8 (2013), no 2, available at http://www.ddekov.eu/j/contents.htm#2013 Google Scholar