Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:27:48.379Z Has data issue: false hasContentIssue false

91.40 An amusing sequence of trigonometrical integrals

Published online by Cambridge University Press:  01 August 2016

Nick Lord*
Affiliation:
Tonbridge School, Kent TN9 1JP

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bailey, D. H., Borwein, J. M., Kapoor, V. & Weisstein, E., Ten problems in experimental mathematics (2004), available on-line at http://eprints.cecm.sfu.ca/archive/00000270/. Google Scholar
2. Bailey, D. H. & Borwein, J. M., Experimental mathematics: examples, methods and applications, Notices of the Amer. Math. Soc. (72) (May 2005) p. 512, available on-line at http://www.ams.org/notices/. Google Scholar
3. Borwein, J., Bailey, D. & Girgensohn, R., Experimentation in mathematics, Peters, A. K. (2004) pp. 98102 & pp. 122–126.Google Scholar
4. Detemple, D. W., The noninteger property of sums of reciprocals of successive integers, Math. Gaz. (75) (July 1991) pp.193194.CrossRefGoogle Scholar
5. Whittaker, E. T. & Watson, G. N., A course of modern analysis (4th ed), Cambridge University Press (1927) p. 122.Google Scholar