Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T05:30:19.758Z Has data issue: false hasContentIssue false

90.02 Calculating exact cycle lengths in the generalised Fibonacci sequence modulo p

Published online by Cambridge University Press:  01 August 2016

Dominic Vella
Affiliation:
194 Buckingham Road, Bletchley, Milton Keynes MK3 5JB email: [email protected]
Alfred Vella
Affiliation:
194 Buckingham Road, Bletchley, Milton Keynes MK3 5JB email: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wall, D. D., Fibonacci series modulo m. Amer. Math. Monthly 67 (1960) pp. 525532.Google Scholar
2. Vella, D. and Vella, A., Cycles in the generalized Fibonacci sequence modulo a prime, Math. Mag. 75 (2002) pp. 294299.Google Scholar
3. Vella, D. and Vella, A., Some properties of finite Fibonacci sequences, Math. Gaz. 88 (November 2004) pp. 494500.Google Scholar
4. Li, H.-C., On second-order linear recurrence sequences: Wall and Wyler Revisited. The Fibonacci Quarterly 37.4 (1999) pp. 342349.Google Scholar
5. Lucas, E., Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1 (1878) pp. 184240, 289–321.CrossRefGoogle Scholar
6. Wells, D., The Penguin dictionary of curious and interesting numbers, (rev. edn.), Penguin Books (1997).Google Scholar
7. Li, H.-C., Conditions for the existence of generalized Fibonacci primitive roots, The Fibonacci Quarterly 38.3 (2000) pp. 244249.Google Scholar