Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T18:30:45.800Z Has data issue: false hasContentIssue false

80.23 A simple approach to the factorial function

Published online by Cambridge University Press:  01 August 2016

David Fowler*
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fowler, D.H., The binomial coefficient function, The American Mathematical Monthly 103 (1) (1996) pp. 117. (For a more clearly reproduced set of graphics, see the www directory http:// www.maths.warwick.ac.uk/maths/papers/, or the ftp directory ftp:// ftp.maths.warwick.ac.uk/pub/papers/dhf, or contact the author.)CrossRefGoogle Scholar
2. Artin, E., Einführung in die Theorie die Gammafunktion, Teubner, Leipzig (1931): tr. Butler, M., The Gamma Function, Holt, Rinehart and Winston, New York (1964).Google Scholar
3. Bourbaki, N., Éléments de Mathématique, Livre IV: Fonctions d’une variable réelle, Chapitre 7, La fonction Gamma, Paris: Hermann, 1951, rev. ed. 1961.Google Scholar
4. Graham, R.L., Knuth, D.E. and Patashnik, O., Concrete mathematics, Addison-Wesley, Reading, Mass. (1988).Google Scholar
5. Davis, P.J., Leonhard Euler’s integral: A historical profile of the Gamma Function, American Mathematical Monthly 66 (1959) pp. 849869.Google Scholar