Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T09:14:05.964Z Has data issue: false hasContentIssue false

107.23 Location of the inarc circle and its point of contact with the circumcircle

Published online by Cambridge University Press:  03 July 2023

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University ”Goce Delcev” - Stip, North Macedonia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2023. Published by Cambridge University Press on behalf of The Mathematical Association

References

Leversha, G., The Geometry of the Triangle, UKMT (2013)Google Scholar
Altshiller-Court, N., College Geometry, Barnes & Noble (1952)Google Scholar
Lukarevski, M., An inequality arising from the inarc centres of a triangle, Math. Gaz. 103 (November 2019) pp. 538541. doi: 10.1017/mag.2019.125CrossRefGoogle Scholar
Lukarevski, M., Proximity of the incentre to the inarc centres, Math. Gaz. 105 (March 2021) pp. 142147. doi: 10.1017/mag.2021.26CrossRefGoogle Scholar
Lukarevski, M., Wanner, G., Mixtilinear radii and Finsler-Hadwiger inequality, Elem. Math. 75(3), (2020) pp. 121124. doi: 10.4171/EM/412CrossRefGoogle Scholar