Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T09:19:45.167Z Has data issue: false hasContentIssue false

107.22 Quick proofs of two inequalities related to the digamma function

Published online by Cambridge University Press:  03 July 2023

Rasul Khan
Affiliation:
Cleveland State University
Allan Silberger
Affiliation:
1573 Kew Rd, Cleveland Hts, OH, 44118 USA e-mails: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2023. Published by Cambridge University Press on behalf of The Mathematical Association

References

Artin, E., The Gamma Function, Holt, Rinehart and Winston, Inc. (1964)Google Scholar
Courant, R., Differential and Integral Calculus, Vol. 2, Wiley, New York (1968).Google Scholar
Gordon, L., A Stochastic Approach to the Gamma Function, Amer. Math. Monthly, 101 (1994) pp. 858865.CrossRefGoogle Scholar
Jameson, G. J. O., A simple proof of Stirling’s formula for the gamma function, Math. Gaz., 99 (March 2015) pp. 6874.Google Scholar
Wikipedia, Digamma Function, Inequalities, Online Article.Google Scholar