Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T15:51:54.287Z Has data issue: false hasContentIssue false

107.06 Proving inequalities via definite integration: a visual approach

Published online by Cambridge University Press:  16 February 2023

Nazrul Haque
Affiliation:
Ramakrishna Mission Vivekananda Centenary College, West Bengal, India e-mail: [email protected]
Ángel Plaza
Affiliation:
University of Las Palmas de Gran Canaria, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2023. Published by Cambridge University Press on behalf of The Mathematical Association

References

Haque, N., A Visual Proof that eABA B > B A , Resonance, 26(1) (2021) pp. (127128).10.1007/s12045-020-1109-5CrossRefGoogle Scholar
Mukherjee, A. and Chakraborty, B., Yet Another Visual Proof that π e < e π , Math. Intelligencer, 41(2) (2019) p. 60.CrossRefGoogle Scholar
Gallant, C., A B > B A for eAB , Math. Mag. 64(1) (1991) p. 31.CrossRefGoogle Scholar
Yuefeng, N., Proof Without Words: Jordan’s inequality, Math. Mag., 69(2) (1996) p. 126.CrossRefGoogle Scholar
Nelsen, R., Proof without words II (2000), MAA.Google Scholar
Plaza, A., Harmonic, Logarithmic, and Arithmetic Means and corollaries, Amer. Math. Monthly, 127(5) (2020), p. 427. CrossRefGoogle Scholar
Plaza, A., HM-LM-AM Inequalities, Math. Mag., 94(2) (2021), p. 148. CrossRefGoogle Scholar