Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T09:12:01.682Z Has data issue: false hasContentIssue false

107.05 The final solution of a quasi-palindromic

Published online by Cambridge University Press:  16 February 2023

Hiroshi Ohyama
Affiliation:
Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan e-mails: [email protected] [email protected]
Koichiro Ike
Affiliation:
Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan e-mails: [email protected] [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2023. Published by Cambridge University Press on behalf of The Mathematical Association

References

King, R. B., Beyond the quartic equation, Birkhaüser, Boston (1996).CrossRefGoogle Scholar
Descartes, R., The Geometry of René Descartes, with a facsimile of the 1st edition, Dover, New York (1954).Google Scholar
Euler, L., Elements of Algebra, reprint of the 5th edition, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
Lagrange, J. L., Réflexions sur la résolution algébrique des équations, in Serret, J. A. (ed.), Œuvres de Lagrange, III, Gauthier-Villars (1869) p. 205-421.Google Scholar
Christianson, B., Solving quartics using palindromes, Math. Gaz. 75 (October 1991) pp. 327328.CrossRefGoogle Scholar
Yacoub, M. D. and Fraidenraich, G., A solution to the quartic equation, Math. Gaz. 96 (July 2012) pp. 271275.CrossRefGoogle Scholar
Hacke, J. E. Jr., A simple solution of the general quartic, Amer. Math. Monthly 48 (1941) pp. 327328.Google Scholar