We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Janot de Stainville, Mélanges d’analyse algébrique et de géométrie [A mixture of algebraic analysis and geometry], Veuve Courcier (1815) pp. 340-341.Google Scholar
2
Euler, Leonhard, De fractionibus continuis dissertatio [A dissertation on continued fractions] (PDF), Commentarii academiae scientiarum Petropolitanae 9 (1744) pp. 98-137.Google Scholar
3
Euler, Leonhard, An essay on continued fractions, Mathematical Systems Theory18 (1985) pp. 295–398.Google Scholar
4
Edward Sandifer, C., How Euler did it, Mathematical Association of America (2007).Google Scholar
5
Cohn, Henry, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly, 113 (1) (2006) pp. 57–62.Google Scholar
6
MacDivitt, A. R. G., Yanagisawa, Yukio, An elementary proof that is irrational, Math. Gaz. 71 (October 1987) p. 217. eGoogle Scholar
7
Penesi, L. L., Elementary proof that is irrational, Amer. Math. Monthly60 (7) (1953) p. 474. eGoogle Scholar
Liouville, Joseph, Sur l’irrationalité du nombree = 2,718…. Journal de Mathématiques Pures et Appliquées. 1 (in French) 5 (1840) p. 192.
Google Scholar
10
Hurwitz, Adolf, [1891]. Über die Kettenbruchentwicklung der Zahl e. Mathematische Werke (in German). 2. Birkhäuser (1933) pp. 129-133.Google Scholar
11
Liouville, Joseph, Addition à la note sur l’irrationalité du nombre, Journal de Mathématiques Pures et Appliquées.1 (in French). 5 (1840) pp. 193-194.Google Scholar
12
Niven, Ivan, Irrational Numbers (1st edn.), 11 Mathematical Association of America, 1985.Google Scholar
13
Martin Aigner, Günter M.Ziegler, Proofs from THE BOOK (4th edn.), Springer-Verlag (1998) pp. 27–36.CrossRefGoogle Scholar
14
Nathan, J., The irrationality of for nonzero rational, Amer. Math. Monthly105(8), (1998) pp. 762–763. ex xGoogle Scholar
15
Chrystal, G., Algebra: an elementary text-book for the higher classes of secondary schools and for colleges, Vol.II (1889).Google Scholar
16
Wall, H. S., Analytic Theory of Continued Fractions, Chelsea, New York (1948) pp. 335–361.Google Scholar
17
Borwein, J., Bailey, D. and Girgensohn, R., Experimentation in mathematics: computational paths to discovery, A K Peters, (2004) pp. 31–34.Google Scholar