Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T05:53:05.205Z Has data issue: false hasContentIssue false

104.28 Extending Cardano‘s solution of the cubic

Published online by Cambridge University Press:  08 October 2020

Hiroshi Ohyama*
Affiliation:
Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

King, B. R., Beyond the quartic equation, Birkhaüser, Boston (1996).Google Scholar
Descartes, R., The geometry of René Descartes, with a facsimile of the 1st edition, Dover, New York (1954).Google Scholar
Euler, L., Elements of algebra, reprint of the 5th edition, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
Lagrange, J. L., Réflexions sur la résolution algébrique des équations. In J. A. Serret, eds. Œuvres de Lagrange, III, Gauthier-Villars (1869) pp. 205421.Google Scholar
Christianson, B., Solving quartics using palindromes, Math. Gaz. 75 (October 1991) pp. 327328.10.2307/3619497CrossRefGoogle Scholar
Yacoub, M. D. and Fraidenraich, G., A solution to the quartic equation, Math. Gaz. 96 (July 2012) pp. 271275.CrossRefGoogle Scholar
Williams, K. S., A generalisation of Cardan's solution of the cubic, Math. Gaz. 46 (October 1962) pp. 221223.10.2307/3614024CrossRefGoogle Scholar
Sawin, A. M., The algebraic solution of equation, Ann. of Math. 6 (1892) pp. 169177.CrossRefGoogle Scholar
Borger, R. L., On DeMoivre's quintic, Amer. Math. Monthly 15 (1908) pp. 171174.CrossRefGoogle Scholar