Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T16:28:41.488Z Has data issue: false hasContentIssue false

104.07 An inequality for the altitudes of the excentral triangle

Published online by Cambridge University Press:  02 March 2020

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University ”Goce Delcev” - Stip, Macedonia e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Leuenberger, F., Problem, E 1573, Amer. Math. Monthly 71 (1963) p. 331; solution by L. Carlitz, ibid. 72 (1964) pp. 93-94.Google Scholar
Lukarevski, M., An inequality arising from the inarc centres of a triangle, Math. Gaz. 103 (November 2019) pp. 538541.10.1017/mag.2019.125CrossRefGoogle Scholar
Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., Vasic, P. M., Geometric inequalities., Wolters-Noordhoff, Groningen (1969).Google Scholar
Lukarevski, M., Exradii of the triangle and Euler’s inequality, Math. Gaz. 101 (March 2017) p.123.10.1017/mag.2017.18CrossRefGoogle Scholar
Altshiller-Court, N., College Geometry, Barnes & Noble (1952).Google Scholar
Leversha, G., The geometry of the triangle, UKMT (2013).Google Scholar
Johnson, R., Advanced Euclidean geometry, Dover (1960).Google Scholar
Lukarevski, M., An alternate proof of Gerretsen’s inequalities, Elem. Math. 72 (1) (2017) pp. 28.Google Scholar