Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T05:52:01.869Z Has data issue: false hasContentIssue false

104.04 The complementary cubic

Published online by Cambridge University Press:  02 March 2020

R. W. D. Nickalls*
Affiliation:
10 Queens Parade, CheltenhamGL50 3BB e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Henriquez, G., The graphical interpretation of the complex roots, Amer. Math. Monthly 42 (1935) pp. 383384.10.2307/2301359CrossRefGoogle Scholar
Dunnett, R., Newton-Raphson and the cubic, Math. Gaz. 78 (November 1994) pp. 347348.10.2307/3620218CrossRefGoogle Scholar
Jobbings, A., Chords, tangents and cubics, Math. Gaz. 79 (July 1995) pp. 348350.CrossRefGoogle Scholar
Francis, F. H., Complex roots from a graph, Math. Gaz. 54 (May 1970) pp. 145147.10.2307/3612100CrossRefGoogle Scholar
Gehman, H. M., Complex roots of a polynomial equation, Amer. Math. Monthly 48 (1941) pp. 237239.CrossRefGoogle Scholar
Cundy, H. M., Geometry, tangents, and cubics, Math. Gaz. 79 (July 1995) p. 347.CrossRefGoogle Scholar
Nickalls, R. W. D., A new approach to solving the cubic: Cardan’s solution revealed, Math. Gaz. 77 (November 1993) pp. 354359.10.2307/3619777CrossRefGoogle Scholar