Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T12:11:11.032Z Has data issue: false hasContentIssue false

102.49 A very short proof of Pamfilos's characterisation of the rhombus

Published online by Cambridge University Press:  17 October 2018

Mowaffaq Hajja*
Affiliation:
P. O. Box 1, Philadelphia University, 19392 − Amman − Jordan e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pamfilos, P., A characterisation of the rhombus, Forum Geom. 16 (2016) pp. 331336.Google Scholar
2. Hajja, M., Review of [1], Zentralblatt Math., Zbl 1355.51004.Google Scholar
3. Gelca, R. and Andreescu, T., Putnam and beyond, Springer, New York (2007).Google Scholar
4. Sharygin, I. F., Problems in plane geometry, Mir Publishers, Moscow (1988).Google Scholar
5. Smarandache, F. and Pătraşcu, I., The geometry of homological triangles, The Education Publisher, Inc., Ohio (2012).Google Scholar
6. Hajja, M., Review of [5], Zentralblatt Math., Zbl 1355.51004Google Scholar
7. Hajja, M., Problem 1002, College Math. J. 44 (2013) p. 233; correction, ibid, p. 437; solution, ibid, 45 (2014) pp. 394-395.Google Scholar
8. Josefsson, M., Properties of bisect-diagonal quadrilaterals, Math. Gaz. 101 (July 2017) pp. 214226.Google Scholar
9. Hajja, M. and Hayajneh, M., Problem 1944, Math. Mag. 87 (2014) p. 152; solution, ibid, 88 (2015) pp. 240-241.Google Scholar
10. Josefsson, M., Characterisations of orthodiagonal quadrilaterals, Forum Geom. 12 (2012) pp. 1325.Google Scholar