Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T20:55:53.252Z Has data issue: false hasContentIssue false

Direct nematode predation in the marine nematode Synonchiella spiculora (Selachinematidae: Nematoda)

Published online by Cambridge University Press:  26 May 2009

Arely Martínez-Arce
Affiliation:
Molecular Ecology Laboratory, Deparment of Biological Oceanography, Centro de Investigación Científica y Educación Superior de Ensenada, Carretera Tijuana-Ensenada, Km. 107, Baja California 22860, México
Ruth Gingold
Affiliation:
Molecular Ecology Laboratory, Deparment of Biological Oceanography, Centro de Investigación Científica y Educación Superior de Ensenada, Carretera Tijuana-Ensenada, Km. 107, Baja California 22860, México
Axayácatl Rocha-Olivares
Affiliation:
Molecular Ecology Laboratory, Deparment of Biological Oceanography, Centro de Investigación Científica y Educación Superior de Ensenada, Carretera Tijuana-Ensenada, Km. 107, Baja California 22860, México
Get access

Abstract

This study documents direct evidence of nematode predation in the free living marine nematode Synonchiella spiculora recorded in the intertidal of Santa Clara beach in the Upper Gulf of California, Mexico. The heavily armoured buccal cavity that allows S. spiculora to break larger particles and ingest other organisms is characteristic of nematodes categorized as predators and omnivores. The inferred feeding behaviour of S. spiculora and other Selachinematidae suggests that engulfing whole and relatively large prey items may be common in this group. Synonchiella spiculora could be classified in the guild of ‘predators’ sensu Jensen (1987) and Moens & Vincx (1997). Nevertheless, more direct observations are required to ‘ground truth’ inferences based on their morphological variation and to better understand their feeding ecology.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: Department of Nematology, University of California, Riverside, California 92521, USA

References

REFERENCES

Ambrose, W.G. Jr (1984) Role of predatory infauna in structuring marine soft-bottom communities. Marine Ecology Progress Series 17, 109115.CrossRefGoogle Scholar
Chitwood, B.G. and Timm, R.W. (1954) Free-living nematodes of the Gulf of Mexico: its origins, waters and marine life. Fishery Bulletin of the Fish and Wildlife Service US 55, 313323.Google Scholar
Gallucci, F., Steyaert, M. and Moens, T. (2005) Can field distributions of marine predacious nematodes be explained by sediment constraints on their foraging success? Marine Ecology Progress Series 304, 167178.CrossRefGoogle Scholar
Hamels, I., Moens, T., Muylaert, K. and Vyverman, W. (2001) Trophic interactions between ciliates and nematodes from an intertidal flat. Aquatic Microbiology and Ecology 26, 6172.CrossRefGoogle Scholar
Jensen, P. (1986) Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. IV. Ecological aspects. Marine Biology 92, 489503.CrossRefGoogle Scholar
Jensen, P. (1987) Feeding ecology of free-living aquatic nematodes. Marine Ecology Progress Series 35, 187196.CrossRefGoogle Scholar
Kennedy, A.D. (1994) Predation within meiofaunal communities: description and results of a rapid-freezing method of investigation. Marine Ecology Progress Series 114, 7179.CrossRefGoogle Scholar
Moens, T. and Vincx, M. (1997) Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77, 211227.CrossRefGoogle Scholar
Moens, T., Verbeeck, L. and Vincx, M. (1999) Feeding biology of a predatory and a facultatively predatory nematode (Enoploides longispiculosus and Adoncholaimus fuscus). Marine Biology 134, 585593.CrossRefGoogle Scholar
Moens, T., Herman, P., Verbeeck, L., Steyaert, M. and Vincx, M. (2000) Predation rates and prey selectivity in two predacious estuarine nematode species. Marine Ecology Progress Series 205, 185193.CrossRefGoogle Scholar
Mundo-Ocampo, M., Lambshead, P.J.D., Debenham, N., King, I.W., De Ley, P., Baldwin, J.G., De Ley, I.T., Rocha-Olivares, A., Waumann, D., Thomas, W.K., Packer, M. and Boucher, G. (2007) Biodiversity of littoral nematodes from two sites in the Gulf of California. Hydrobiologia 586, 179189.CrossRefGoogle Scholar
Murphy, D.G. (1962) Three undescribed nematodes from the coast of Oregon. Limnology and Oceanography 3, 386389.CrossRefGoogle Scholar
Romeyn, K. and Bouwman, L.A. (1983) Food selection and consumption by estuarine nematodes. Hydrobiology Bulletin 17, 103109.CrossRefGoogle Scholar
Tchesunov, A.V. and Okhlopkov, J.R. (2006) On some selachinematid nematodes (Chromadorida: Selachinematidae) deposited in the collection of the Smithsonian National Museum of Natural History. Nematology 8, 2144.CrossRefGoogle Scholar
Warwick, R.M. (1971) Nematode associations in the Exe estuary. Journal of the Marine Biological Association of the United Kingdom 51, 439454.CrossRefGoogle Scholar
Wieser, W. (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv für Zoolgie 4, 439484.Google Scholar
Yoder, M., De Ley, I.T., King, I.W., Mundo-Ocampo, M., Mann, J., Blaxter, M., Poiras, L. and De Ley, P. (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8, 367376.CrossRefGoogle Scholar