Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T04:57:02.004Z Has data issue: false hasContentIssue false

Desmodasys abyssalis sp. nov.—first record of a deep-sea gastrotrich from hydrothermal vents

Published online by Cambridge University Press:  25 February 2009

Alexander Kieneke*
Affiliation:
Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany Forschungsinstitut Senckenberg, DZMB, 26382 Wilhelmshaven, Germany
Julia Zekely
Affiliation:
Department of Marine Biology, University of Vienna, 1090 Vienna, Austria
*
Correspondence should be addressed to: Alexander Kieneke, Institut für Biologie and Umweltwissenschaften, Carl von Ossietzky Universität Oldenberg, 26111 Oldenberg, Germany email: [email protected]
Get access

Abstract

A new marine gastrotrich species, Desmodasys abyssalis sp. nov. (Gastrotricha: Macrodasyida), is described from deep-sea hydrothermal vents of the East Pacific Rise based on light microscopy and scanning electron microscope observations. Desmodasys abyssalis was collected from artificial tubeworm aggregations exposed to the intermediate flow zone (medium productivity) and occurred in low abundance. Desmodasys abyssalis is the first record of a gastrotrich inhabiting a deep-sea hydrothermal vent habitat and is the first description of a deep-sea gastrotrich.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Childress, J.J. and Fisher, C.R. (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanography and Marine Biology: on Annual Review 30, 337441.Google Scholar
Clausen, C. (1965) Desmodasys phocoides gen. et sp. n., family Turbanellidae (Gastrotricha Macrodasyoidea). Sarsia 21, 1721.CrossRefGoogle Scholar
Clausen, C. (2000) Gastrotricha Macrodasyida from the Tromsø region, northern Norway. Sarsia 85, 357384.CrossRefGoogle Scholar
Conroy-Dalton, S. and Huys, R. (1999) New genus of Aegisthidae (Copepoda: Harpacticoida) from hydrothermal vents on the Galapagos Rift. Journal of Crustacean Biology 19, 408431.CrossRefGoogle Scholar
Dinet, A.F., Grassle, F. and Tunnicliffe, V. (1988) Premières observations sur la meiofaune des sites hydrothermaux de la dorsale East-Pacifique (Guaymas, 21°N) et de l' Explorer Ridge. Oceanologica Acta 85, 714.Google Scholar
Gollner, S., Zekely, J., Govenar, B., Le Bris, N., Nemeschkal, H.L., Fisher, C.R. and Bright, M. (2007) Community study of tubeworm associated meiobenthos from two chemically different hydrothermal vent sites at the East Pacific Rise. Marine Ecology Progress Series 337, 3949.CrossRefGoogle Scholar
Gollner, S., Zekely, J., Van Dover, C.L., Govenar, B., Le Bris, N. and Bright, M. (2006) The benthic copepod community of tubeworm and mussel aggregations at the East Pacific Rise. Cahiers de Biologie Marine 47, 397402.Google Scholar
Govenar, B. and Fisher, C.R. (2007) Experimental evidence of habitat provision by aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Marine Ecology 28, 314.CrossRefGoogle Scholar
Gutzmann, E., Martínez Arbizu, P., Rose, A. and Veit-Köhler, G. (2004) Meiofauna communities along an abyssal depth gradient in the Drake Passage. Deep-Sea Research 51, 16171628.Google Scholar
Lee, W. and Huys, R. (2000) New Aegisthidae (Copepoda: Harpacticoida) from western Pacific cold seeps and hydrothermal vents. Zoological Journal of the Linnean Society 129, 171.CrossRefGoogle Scholar
Lopez-Garcia, P., Gaill, F. and Moreira, D. (2002) Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environmental Microbiology 4, 204215.CrossRefGoogle ScholarPubMed
Radziejewska, T. (2002) Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. International Review of Hydrobiology 87, 457477.3.0.CO;2-3>CrossRefGoogle Scholar
Rao, G.C. and Clausen, C. (1970) Planodasys marginalis gen. et sp. nov. and Planodasyidae fam. nov. (Gastrotricha Macrodasyoidea). Sarsia 42, 7382.CrossRefGoogle Scholar
Remane, A. (1925) Neue abberante Gastrotrichen II: Turbanella cornuta n. sp. und T. hyalina M. Schulze, 1853. Zoologischer Anzeiger 64, 309314.Google Scholar
Tsurumi, M., Graaf, R.C. de and Tunnicliffe, V. (2003) Distributional and biological aspects of copepods at hydrothermal vents on the Juan de Fuca Ridge, north-east Pacific ocean. Journal of the Marine Biological Association of the United Kingdom 83, 469477.CrossRefGoogle Scholar
Vanreusel, A., Van de Borsches, I. and Thiermann, F. (1997) Free-living marine nematodes from hydrothermal sediments: similarities with communities from diverse reduced habitats. Marine Ecology Progress Series 157, 207219.CrossRefGoogle Scholar
Zeckly, J., Nemeschkal, H.L., Van Dover, C.L. and Bright, M. (2006a) Hydrothermal vent meiobenthos associated with mussel (Bathymodiolus spp.) aggregations from the Mid-Atlantic Ridge and the East Pacific Rise. Deep-Sea Research 53, 13631378.CrossRefGoogle Scholar
Zeckly, J., Sørensen, M.V. and Bright, M. (2006b) Three nematode species (Monhysteridae) from deep-sea hydrothermal vents. Meiofauna Marina 15, 2542.Google Scholar