Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T12:55:16.907Z Has data issue: false hasContentIssue false

Quantitative variation of epiphytic diatoms in Galaxaura rugosa (Nemaliales: Rhodophyta)

Published online by Cambridge University Press:  14 August 2014

Manoel Messias Da Silva Costa*
Affiliation:
Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s / n, 52.171-900, Recife, Pernambuco, Brazil
Sonia Maria Barreto Pereira
Affiliation:
Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s / n, 52.171-900, Recife, Pernambuco, Brazil
Patrícia Campos De Arruda
Affiliation:
Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s / n, 52.171-900, Recife, Pernambuco, Brazil
Enide Eskinazi Leça
Affiliation:
Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s / n, 52.171-900, Recife, Pernambuco, Brazil
*
Correspondence should be addressed to: M.M.S. Costa, Rua Rodrigues Ferreira, 45, Res. Jardim Caxangá, Bl. C, Apartado 1408, 50810-020, Recife/PE, Brazil email: [email protected]
Get access

Abstract

This study aimed at describing the quantitative variations of epiphytic diatoms in Rhodophyta Galaxaura rugosa, collected in the Fernando de Noronha archipelago (north-eastern Brazil), during two annual periods (June 2006 and June 2007). The distribution of epiphytic diatoms in G. rugosa confirmed the occurrence of a quantitative variation/zoning along the thallus of the analysed host, with an increase in density (cells per gram wet weight of seaweed) of apical portions towards the basal parts of the seaweed, regardless of the collection points and the annual periods. The abundance was characterized by individuals with pennate symmetry with raphe, belonging to the Bacillariophyceae class. This fact is the result of the host being collected in an insular environment with great water movement under the direct action of trade winds and ocean currents for most of the year. The study confirmed that in marine ecosystems with strong hydrodynamics, epiphytic flora tends to comprise species with the largest adhesive strength.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergey, E.A., Boettiger, C.A. and Resh, V.H. (1995) Effects of water velocity on the architecture and epiphytes of Cladophora glomerata (Chlorophyta). Journal of Phycology 31, 264271.Google Scholar
Booth, W.E. (1986) Contribution by diatoms to marine algal host–epiphyte photosynthesis. Botanica Marina 30, 129140.Google Scholar
Borum, J. and Wium-Andersen, S. (1980) Biomass and production of epiphytes on eelgrass (Zostera marina L.) in the Oresund, Denmark. In Proceedings of the 6th Symposium of the Baltic Marine Biologists. Ophelia (Supplement 1), 57–64.Google Scholar
Cattaneo, A. and Kalff, J. (1978) Seasonal changes in the epiphyte community of natural and artificial macrophytes in Lake Memphremagog. Hydrobiologia 60, 135144.Google Scholar
Chen, C.P., Ya-Hui, G. and Ling, P. (2010) Geographical and seasonal patterns of epiphytic diatoms on a subtropical mangrove (Kandelia candel) in southern China. Ecological Indicators 10, 143147.CrossRefGoogle Scholar
Chung, M.H. and Lee, K.S. (2008) Species composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae 23, 7581.Google Scholar
Coleman, V.L. and Burkholder, J.M. (1994) Community structure and productivity of epiphytic microalgae on eelgrass (Zostera marina L.) under water-column nitrate enrichment. Journal of Experimental Marine Biology and Ecology 179, 2948.Google Scholar
Costa, M.M.S., Eskinazi-Leça, E., Pereira, S.M.B. and Bandeira-Pedrosa, M.E. (2009) Diatomáceas epífitas em Galaxaura rugosa (J. Ellis and Solander) J.V. Lamouroux (Rhodophyta) no Arquipélago de Fernando de Noronha, PE, Nordeste do Brasil. Acta Botanica Brasilica 23, 713719.Google Scholar
Frankovich, T.A. and Zieman, J.C. (1994) Total epiphyte and epiphytic carbonate production on Thalassia testudinum across Florida Bay. Bulletin of Marine Science 54, 679695.Google Scholar
Frankovich, T.A., Gaiser, E.E., Zieman, J.C. and Wachnicka, A.H. (2006) Spatial and temporal distribution of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water quality. Hydrobiologia 569, 259271.Google Scholar
Gough, S.B. and Woelkerling, W.J. (1976) On the removal and quantification of algal Aufwuchs from macrophyte hosts. Hydrobiologia 48, 203207.Google Scholar
Hammer, Ø., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 19. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed 1 December 2013).Google Scholar
Hasle, G.R. and Fryxell, G.A. (1970) Diatoms: cleaning and mouthing for light and electron microscopy. Transactions of the American Microscopical Society 89, 469474.Google Scholar
Hernándes-Almeida, O.U. and Siqueiros-Beltrones, D.A. (2008) Variaciones en la estructura de asociaciones de diatomeas epifitas de macroalgas en una zona subtropical. Hidrobiológica 18, 5161.Google Scholar
Hustedt, F. (1961) Die Kieselalgen. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 7, 1160.Google Scholar
Jewett-Smith, J. (1991) Factors influencing the standing crop of diatom epiphytes of the seagrass Halodule wrightii Aschers in South Texas seagrass beds. Contributions in Marine Science 32, 2840.Google Scholar
Littler, S.C. and Littler, M.M. (2000) Caribbean reef plants. Washington, DC: OffShore Graphics Inc.Google Scholar
Mann, D.G. (1999) The species concept in diatoms. Phycologia 38, 437495.Google Scholar
Moncreiff, C.A., Sullivan, M.J. and Daehnick, A.E. (1992) Primary production dynamics in seagrass beds of Mississippi Sound: the contributions of seagrass, epiphytic algae, sand microflora, and phytoplankton. Marine Ecology Progress Series 87, 161171.Google Scholar
Moreno, J.L., Licea, S. and Santoyo, H. (1996) Diatomeas del Golfo de Califórnia. 1st edition. Mexico: Universidad Autonoma de Baja California Sur, SEP-FOMES, PROMARCO.Google Scholar
Navarro, J.N., Perez, C., Arce, N. and Arroyo, B. (1989) Benthic marine diatoms of Caja de Muertos Island, Puerto Rico. Nova Hedwigia 49, 333367.Google Scholar
Pinckney, J.L. and Micheli, F. (1998) Microalgae on seagrass mimics: does epiphyte community structure differ from live seagrasses? Journal of Experimental Marine Biology and Ecology 221, 5970.Google Scholar
Ricard, M. (1987) Atlas du phytoplancton marin: diatomophycées. Paris: Editions du Centre National de la Recherche Scientifique.Google Scholar
Round, F.E., Crawford, R.M. and Mann, D.G. (1990) The diatoms—biology and morphology of the genera. Cambridge, Cambridge University Press, 747 pp.Google Scholar
Ruesink, J.L. (1998) Diatom epiphytes on Odonthalia floccosa: the importance of extent and timing. Journal of Phycology 34, 2938.Google Scholar
Siqueiros-Beltrones, D.A., Serviere-Zaragoza, E. and Argumedo-Hernández, U. (2002) Epiphytic diatoms of Macrocystis pyrifera (Linnaeus) C. Agardh from the Baja California Peninsula, Mexico. Oceánides 17, 3139.Google Scholar
Siqueiros-Beltrones, D.A., López-Fuerte, F.O. and Gárate-Lizárragua, I. (2005) Structure of diatom assemblages living on prop roots of the red mangrove (Rhizophora mangle Linnaeus) from the west coast of Baja California Sur, Mexico. Pacific Science 59, 7996.Google Scholar
Siqueiros-Beltrones, D.A. and Hernández-Almeida, O.U. (2006) Florística de diatomeas epifitas en un machón de macroalgas subtropicales. Oceánides 21, 1161.Google Scholar
Siqueiros-Beltrones, D.A. and López-Fuerte, F.O. (2006) Epiphytic diatoms associated with red mangrove (Rhizophora mangle) prop roots in Bahía Magdalena, Baja California Sur, Mexico. Revista de Biología Tropical/International Journal of Tropical Biology and Conservation 54, 287297.CrossRefGoogle ScholarPubMed
Snoeijs, P. (1994) Distribution of epiphytic diatom species composition, diversity and biomass on different macroalgal hosts along seasonal and salinity gradients in the Baltic Sea. Diatom Research 9, 189211.Google Scholar
Snoeijs, P. (1995) Effects of salinity on epiphytic diatom communities on Pilayella littoralis (Phaeophyceae) in the Baltic Sea. Ecoscience 2, 382394.Google Scholar
Sutherland, D.L. (2008) Surface-associated diatoms from marine habitats at Cape Evans, Antarctica, including the first record of living Eunotogramma marginopunctatum . Polar Biology 31, 879888.Google Scholar
Tanaka, N. (1986) Adhesive strength of epiphytic diatoms on various seaweeds. Bulletin of the Japanese Society of Scientific Fisheries 52, 817821.Google Scholar
Totti, C., Poulin, M., Romagnoli, T., Perrone, C., Pennesi, C. and De Stefano, M. (2009) Epiphytic diatom communities on intertidal seaweeds from Iceland. Polar Biology 32, 16811691.Google Scholar
Villaça, R., Pedrini, A.G., Pereira, S.M.B. and Figueiredo, M.A.O. (2006) Flora marinha bentônica das ilhas oceânicas Brasileiras. In Alves, R.J.V. and Castro, J.W.A. (eds) Ilhas Oceânicas Brasileiras da Pesquisa ao Manejo. Brasília: MMA-SBF, pp. 105146.Google Scholar
Wah, T.T. and Wee, Y.C. (1988) Diatoms from mangrove environments of Singapore and southern peninsular Malaysia. Botanica Marina 31, 317327.Google Scholar
Wetherbee, R., Lind, L.J., Burke, J. and Quatrano, S.R. (1998) The first kiss: establishment and control of initial adhesion by raphid diatoms. Journal of Phycology 34, 915.Google Scholar
Worm, B. and Sommer, U. (2000) Rapid direct and indirect effects of a single nutrient pulse in a seaweed–epiphyte–grazer system. Marine Ecology Progress Series 202, 283288.Google Scholar