Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T12:40:43.039Z Has data issue: false hasContentIssue false

CAN CAPACITY CONSTRAINTS EXPLAIN ASYMMETRIES OF THE BUSINESS CYCLE?

Published online by Cambridge University Press:  07 March 2013

Malte Knüppel*
Affiliation:
Deutsche Bundesbank
*
Address correspondence to: Malte Knüppel, Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, D-60431 Frankfurt am Main, Germany; e-mail: [email protected].

Abstract

In this paper, we investigate the ability of a modified real business cycle (RBC) model to reproduce asymmetries observed for macroeconomic variables over the business cycle. To replicate the empirical skewness of major U.S. macroeconomic variables, we introduce a capacity constraint into an otherwise prototypical RBC model. This constraint emerges because of the assumption of kinked marginal costs of utilization, where the kink is located at a utilization rate of 100%. We find that a model with a suitably calibrated cost function reproduces the empirical coefficients of skewness remarkably well.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bai, J. and Ng, S. (2005) Tests of skewness, kurtosis, and normality for time series data. Journal of Business and Economic Statistics 23 (1), 4960.CrossRefGoogle Scholar
Burns, A.M. and Mitchell, W.C. (1946) Measuring Business Cycles. New York: National Bureau of Economic Research.Google Scholar
Canova, F. (1998) Detrending and business cycle facts. Journal of Monetary Economics 41, 475512.CrossRefGoogle Scholar
Christiano, L.J. (1988) Why does inventory investment fluctuate so much? Journal of Monetary Economics Volume 21, 247280.CrossRefGoogle Scholar
Christiano, L., Eichenbaum, M., and Evans, C. (2001) Nominal rigidities and the dynamic effects of a shock to monetary policy. Unpublished manuscript.CrossRefGoogle Scholar
Clements, M.P. and Krolzig, H.-M. (2003) Business cycle asymmetries: Characterisation and testing based on Markov-switching autoregressions. Journal of Business and Economic Statistics 21, 196211.CrossRefGoogle Scholar
Cooley, T.F. and Prescott, E.C. (1995) Economic growth and business cycles. In Cooley, T.F. (ed.), Frontiers of Business Cycle Research, chap. 1, pp. 138. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
DeLong, J.B. and Summers, L.H. (1986) Are business cycles symmetrical? In Gordon, R.J. (ed.), The American Business Cycle: Continuity and Change, pp. 166178. University of Chicago Press for the National Bureau of Economic Research.Google Scholar
Gasser, T. (1975) Goodness-of-fit-tests for correlated data. Biometrika 62 (3), 563570.CrossRefGoogle Scholar
Gilchrist, S. and Williams, J.C. (2000) Putty-clay and investment: A business cycle analysis. Journal of Political Economy 108 (5), 928960.CrossRefGoogle Scholar
Goodwin, T.H. (1993) Business-cycle analysis with a Markov-switching model. Journal of Business and Economic Statistics 11 (3), 331339.Google Scholar
Hansen, G.D. (1985) Indivisible labor and the business cycle. Journal of Monetary Economics 16, 309327.CrossRefGoogle Scholar
Hansen, G.D. and Prescott, E.C. (2005) Capacity constraints, asymmetries, and the business cycle. Review of Economic Dynamics 8 (4), 850865.CrossRefGoogle Scholar
Ireland, P.N. (2004) A method for taking models to the data. Journal of Economic Dynamics and Control 28, 12051226.CrossRefGoogle Scholar
Keynes, J.M. (1936) The General Theory of Employment, Interest and Money. Macmillan.Google Scholar
King, R.G., Plosser, C.I., and Rebelo, S.T. (1988) Production, growth and business cycles: I. The basic neoclassical model. Journal of Monetary Economics 21 (2/3), 195232.CrossRefGoogle Scholar
King, R.G. and Rebelo, S.T. (1999) Resuscitating real business cycles. In Taylor, J.B. and Woodford, M. (eds.), Handbook of Macroeconomics, vol. 1B, chap. 14. Amsterdam: North-Holland.Google Scholar
Mitchell, W.C. (1927) Business Cycles: The Problem and Its Setting. New York: National Bureau of Economic Research.Google Scholar
Neftci, S.N. (1984) Are economic time series asymmetric over the business cycle? Journal of Political Economy 92 (2), 307328.CrossRefGoogle Scholar
Newey, W.K. and West, K.D. (1987) A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55 (3), 703708.CrossRefGoogle Scholar
Psaradakis, Z. and Sola, M. (2003) On detrending and cyclical asymmetry. Journal of Applied Econometrics 18 (3), 271289.CrossRefGoogle Scholar
Rogerson, R. (1988) Indivisible labor, lotteries and equilibrium. Journal of Monetary Economics 21 (1), 316.CrossRefGoogle Scholar
Sichel, D.E. (1993) Business cycle asymmetry: A deeper look. Economic Inquiry 31, 224236.CrossRefGoogle Scholar
Smets, F. and Wouters, R. (2003) An estimated dynamic stochastic general equilibrium model of the euro area. Journal of the European Economic Association 1 (5), 11231175.CrossRefGoogle Scholar
Stokey, N. and Rebelo, S.T. (1995) Growth effects of flat-rate taxes. Journal of Political Economy 103, 519550.CrossRefGoogle Scholar
Taubman, P. and Wilkinson, M. (1970) User cost, capital utilization and investment theory. International Economic Review 11 (2), 209–15.CrossRefGoogle Scholar
Tauchen, G. (1986) Finite state Markov-chain approximations to univariate and vector autoregressions. Economics Letters 20, 177–81.CrossRefGoogle Scholar
Valderrama, D. (2007) Statistical nonlinearities in the business cycle: A challenge for the canonical RBC model. Journal of Economic Dynamics and Control 31 (9), 29572983.CrossRefGoogle Scholar
VanAAAANieuwerburgh, S. and Veldkamp, L. (2006) Learning asymmetries in real business cycles. Journal of Monetary Economics 53 (4), 753772.CrossRefGoogle Scholar