Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T11:56:35.907Z Has data issue: false hasContentIssue false

Restricting unipotent characters in special orthogonal groups

Published online by Cambridge University Press:  01 July 2015

Frank Himstedt
Affiliation:
Technische Universität München, Zentrum Mathematik – M11, Boltzmannstr. 3, 85748 Garching, Germany email [email protected]
Felix Noeske
Affiliation:
Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany email [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For all prime powers $q$ we restrict the unipotent characters of the special orthogonal groups $\text{SO}_{5}(q)$ and $\text{SO}_{7}(q)$ to a maximal parabolic subgroup. We determine all irreducible constituents of these restrictions for $\text{SO}_{5}(q)$ and a large part of the irreducible constituents for $\text{SO}_{7}(q)$.

Type
Research Article
Copyright
© The Author(s) 2015 

References

An, J. and Hiss, G., ‘Restricting the Steinberg character in finite symplectic groups’, J. Group Theory 9 (2006) 251264.CrossRefGoogle Scholar
An, J. and Hiss, G., ‘Restricting unipotent characters in finite symplectic groups’, Comm. Algebra 39 (2011) 11041130.CrossRefGoogle Scholar
Carter, R. W., Finite groups of Lie type – conjugacy classes and complex characters (John Wiley, New York, 1985).Google Scholar
Conway, J., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., ATLAS of finite groups (Oxford University Press, Oxford, 1985).Google Scholar
Enomoto, H., ‘The characters of the finite symplectic group Sp4(q), q = 2 f ’, Osaka J. Math. 9 (1972) 7594.Google Scholar
Geck, M., Hiss, G., Lübeck, F., Malle, G. and Pfeiffer, G., ‘CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras’, Appl. Algebra Engrg. Comm. Comput. 7 (1996) 175210.CrossRefGoogle Scholar
Guralnick, R. M. and Tiep, P. H., ‘Cross characteristic representations of even characteristic symplectic groups’, Trans. Amer. Math. Soc. 356 (2004) 49695023; (electronic).CrossRefGoogle Scholar
Himstedt, F. and Noeske, F., ‘Decomposition numbers of SO7(q) and Sp6(q)’, J. Algebra 413 (2014) 1540.CrossRefGoogle Scholar
Hiss, G. and Kessar, R., ‘Scopes reduction and Morita equivalence classes of blocks in finite classical groups’, J. Algebra 230 (2000) 378423.CrossRefGoogle Scholar
Isaacs, I. M., Character theory of finite groups (Dover, New York, 1994) (reprint).Google Scholar
Jacobson, N., Basic algebra I , 2nd edn (W. H. Freeman, New York, 1985).Google Scholar
Schaeffer Fry, A., ‘Cross-characteristic representations of Sp6(2 a ) and their restrictions to proper subgroups’, J. Pure Appl. Algebra 217 (2013) 15631582.CrossRefGoogle Scholar
Schmölzer, T., ‘Restricting the Steinberg character in finite orthogonal groups’, Diplomarbeit, RWTH Aachen University, 2012.Google Scholar
Taylor, D. E., The geometry of the classical groups , Sigma Series in Pure Mathematics 9 (Heldermann, Berlin, 1992).Google Scholar