No CrossRef data available.
Article contents
Representation-Directed Diamonds
Published online by Cambridge University Press: 01 February 2010
Abstract
A module over a finite-dimensional algebra is called a ‘diamond’ if it has a simple top and a simple socle. Using covering theory, the classification of all diamonds for algebras of finite representation type over algebraically closed fields can be reduced to representation-directed algebras. The author proves a criterion referring to the positive roots of the corresponding Tits quadratic form, which makes it easy to check whether a representation-directed algebra has a faithful diamond. Using an implementation of this criterion in the CREP program system on representation theory, he is able to classify all exceptional representation-directed algebras having a faithful diamond. He obtains a list of 157 algebras up to isomorphism and duality. The 52 maximal members of this list are presented at the end of this paper.
- Type
- Research Article
- Information
- Copyright
- Copyright © London Mathematical Society 2001