Article contents
Picard Groups and Refined Discrete Logarithms
Published online by Cambridge University Press: 01 February 2010
Abstract
Let K denote a number field, and G a finite abelian group. The ring of algebraic integers in K is denoted in this paper by $/cal{O}_K$, and $/cal{A}$ denotes any $/cal{O}_K$-order in K[G]. The paper describes an algorithm that explicitly computes the Picard group Pic($/cal{A}$), and solves the corresponding (refined) discrete logarithm problem. A tamely ramified extension L/K of prime degree l of an imaginary quadratic number field K is used as an example; the class of $/cal{O}_L$ in Pic($/cal{O}_K[G]$) can be numerically determined.
- Type
- Research Article
- Information
- Copyright
- Copyright © London Mathematical Society 2005
References
- 6
- Cited by