Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T05:12:41.213Z Has data issue: false hasContentIssue false

On 4-Engel Groups

Published online by Cambridge University Press:  01 February 2010

Michael Vaughan-Lee
Affiliation:
Christ Church, Oxford OX1 1DP, United Kingdom, [email protected]://users.ox.ac.uk/~vlee/

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, the author proves that a group G is a 4-Engel group if and only if the normal closure of every element gG is a 3-Engel group

Type
Research Article
Copyright
Copyright © London Mathematical Society 2007

References

1.Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system I: The user language’, J. Syrnb. Comp. 24 3/4 (1997) 235265.Google Scholar
2.Group, The Gap, ‘GAP - Groups, Algorithms, and Programming, Version 4.4.4’, 2004, http://gap-system.org.Google Scholar
3.Gupta, N. D. and Levin, F., ‘On soluble Engel groups and Lie algebras’, Arch. Math. 34 (1980) 289295.CrossRefGoogle Scholar
4.Havas, G., Newman, M. F. and Vaughan-Lee, M. R., ‘A nilpotent quotient algorithm for graded Lie rings’, J. Symbolic Computation 9 (1990) 653664.CrossRefGoogle Scholar
5.Havas, G. and Vaughan-Lee, M. R., ‘Computing with 4-Engel groups’, Groups St Andrews 2005, London Mathematical Society Lecture Notes Series 340 (Cambridge University Press, 2007) 475485.CrossRefGoogle Scholar
6.Havas, G. and Vaughan-Lee, M. R., ‘4-Engel groups are locally nilpotent’, Internat. J. Algebra and Computation 15 (2005) 649’682.CrossRefGoogle Scholar
7.Heineken, H., ‘Engelsche Elemente der Länge drei’, Illinois J. Math. 5 (1961) 681707.CrossRefGoogle Scholar
8.Kappe, L. C. and Kappe, W. P., ‘On three Engel groups’, Bull. Austral. Math. Soc. 7 (1972) 391405.CrossRefGoogle Scholar
9.Levi, F. W., ‘Groups in which the commutator operation satisfies certain algebraic conditions’, J. Indian Math. Soc. 6 (1942) 8797.Google Scholar
10.Nickel, W., ‘Computation of nilpotent Engel groups’, J. Austral. Math. Soc. Ser.A 67 (1999) 214222.CrossRefGoogle Scholar
11.Traustason, G., ‘Locally nilpotent 4-Engel groups are Fitting groups’, J. Algebra 270 (2003) 727.CrossRefGoogle Scholar