Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T05:03:49.211Z Has data issue: false hasContentIssue false

Eigenvalue enclosures and exclosures for non-self-adjoint problems in hydrodynamics

Published online by Cambridge University Press:  01 March 2010

B. Malcolm Brown
Affiliation:
School of Computer Science, Cardiff University, 5 The Parade, Cardiff CF24 3AA, United Kingdom (email: [email protected])
Matthias Langer
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, United Kingdom (email: [email protected])
Marco Marletta
Affiliation:
School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, United Kingdom (email: [email protected])
Christiane Tretter
Affiliation:
Mathematisches Institut, Universität Bern,, Sidlerstrasse 5, 3012 Bern, Switzerland (email: [email protected])
Markus Wagenhofer
Affiliation:
Psylock GmbH, Regerstrasse 4, 93053 Regensburg, Germany (email: [email protected])

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we present computer-assisted proofs of a number of results in theoretical fluid dynamics and in quantum mechanics. An algorithm based on interval arithmetic yields provably correct eigenvalue enclosures and exclosures for non-self-adjoint boundary eigenvalue problems, the eigenvalues of which are highly sensitive to perturbations. We apply the algorithm to: the Orr–Sommerfeld equation with Poiseuille profile to prove the existence of an eigenvalue in the classically unstable region for Reynolds number R=5772.221818; the Orr–Sommerfeld equation with Couette profile to prove upper bounds for the imaginary parts of all eigenvalues for fixed R and wave number α; the problem of natural oscillations of an incompressible inviscid fluid in the neighbourhood of an elliptical flow to obtain information about the unstable part of the spectrum off the imaginary axis; Squire’s problem from hydrodynamics; and resonances of one-dimensional Schrödinger operators.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2010

References

[1] Brown, B. M., Langer, M., Marletta, M., Tretter, C. and Wagenhofer, M., ‘Eigenvalue bounds for the singular Sturm–Liouville problem with a complex potential’, J. Phys. A 36 (2003) 37733787.Google Scholar
[2] K.-H. Chu, W., ‘Spectra of the Orr–Sommerfeld equation: the plane Poiseuille flow for the normal fluid revisited’, J. Phys. A 34 (2001) 33893392.CrossRefGoogle Scholar
[3] Denk, R., Möller, M. and Tretter, C., ‘The spectrum of a parametrized partial differential operator occurring in hydrodynamics’, J. London Math. Soc. (2) 65 (2002) 483492.CrossRefGoogle Scholar
[4] Dongarra, J. J., Straughan, B. and Walker, D. W., ‘Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems’, Appl. Numer. Math. 22 (1996) 399434.CrossRefGoogle Scholar
[5] Drazin, P. G. and Reid, W. H., Hydrodynamic stability (Cambridge University Press, Cambridge, 1982).Google Scholar
[6] Georgescu, A., Hydrodynamic stability theory (Martinus Nijhoff Publishers, Dordrecht, 1985).CrossRefGoogle Scholar
[7] Godunov, S. K., ‘Spectral portraits of matrices and criteria of spectrum dichotomy’, Computer arithmetic and enclosure methods (Oldenburg, 1991) (North-Holland, Amsterdam, 1992) 2535.Google Scholar
[8] Greenberg, L. and Marletta, M., ‘Numerical solution of non-self-adjoint Sturm–Liouville problems and related systems’, SIAM J. Numer. Anal. 38 (2001) 18001845.Google Scholar
[9] Heisenberg, W., ‘Über Stabilität und Turbulenz von Flüssigkeitsströmen’, Ann. Phys. (4) 74 (1924) no. 379, 577627 (German); ‘On stability and turbulence of fluid flows’, Tech. Memos. Nat. Comm. Aeronaut. (1951) no. 1291 (English).Google Scholar
[10] Hinrichsen, D. and Pritchard, A. J., ‘Mathematical systems theory I’, Modelling state space analysis and robustness (Springer, Berlin, 2005).Google Scholar
[11] Joseph, D. D., ‘Eigenvalue bounds for the Orr–Sommerfeld equation’, J. Fluid Mech. 33 (1968) 617621.Google Scholar
[12] Lahmann, J. and Plum, M., ‘On the spectrum of the Orr–Sommerfeld equation on the semiaxis’, Math. Nachr. 216 (2000) 145153.3.0.CO;2-0>CrossRefGoogle Scholar
[13] Lahmann, J. and Plum, M., ‘A computer-assisted instability proof for the Orr–Sommerfeld equation with Blasius profile’, Z. Angew. Math. Mech. 84 (2004) 188204.CrossRefGoogle Scholar
[14] Langer, H. and Tretter, C., ‘Spectral properties of the Orr–Sommerfeld problem’, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 12451261.CrossRefGoogle Scholar
[15] Lifschitz, A., ‘Exact description of the spectrum of elliptical vortices in hydrodynamics and magnetohydrodynamics’, Phys. Fluids 7 (1995) 16261636.Google Scholar
[16] Lin, C. C., The theory of hydrodynamic stability (Cambridge University Press, Cambridge, 1955).Google Scholar
[17] Nachtsheim, P. R., ‘An initial value method for the numerical treatment of the Orr–Sommerfeld equation for the case of plane Poiseuille flow’, NASA Technical Report TN D-2414, Lewis Research Center, Cleveland, OH, 1964.Google Scholar
[18] Nedialkov, N. S., Jackson, K. R. and Pryce, J. D., ‘An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE’, Reliab. Comput. 7 (2001) 449465.Google Scholar
[19] Ng, B. S. and Reid, W. H., ‘An initial value method for eigenvalue problems using compound matrices’, J. Comput. Phys. 33 (1979) 7085.Google Scholar
[20] Orszag, S. A., ‘Accurate solution of the Orr–Sommerfeld stability equation’, J. Fluid Mech. 50 (1971) 689703.CrossRefGoogle Scholar
[21] Romanov, V. A., ‘Stability of plane-parallel Couette flow’, Dokl. Akad. Nauk SSSR 196 (1971) 10491051.Google Scholar
[22] Schensted, I. V., Contributions to the theory of hydrodynamic stability (University of Michigan, Ann Arbor, 1960).Google Scholar
[23] Schmid, P. J. and Henningson, D. S., Stability and transition in shear flows (Springer, New York, 2001).Google Scholar
[24] Stuart, J. T., DiPrima, R. C., Eagles, P. M. and Davey, A., ‘On the instability of the flow in a squeeze lubrication film’, Proc. R. Soc. Lond. Ser. A 430 (1990) 347375.Google Scholar
[25] Thomas, L. H., ‘The stability of plane Poiseuille flow’, Phys. Rev. 91 (1953) 780783.Google Scholar
[26] Trefethen, L. N. and Embree, M., ‘Spectra and pseudospectra’, The behavior of nonnormal matrices and operators (Princeton University Press, Princeton, 2005).Google Scholar
[27] Trefethen, L. N., Trefethen, A. E., Reddy, S. C. and Driscoll, T. A., ‘Hydrodynamic stability without eigenvalues’, Science 261 (1993) no. 5121, 578584.CrossRefGoogle ScholarPubMed
[28] Watanabe, Y., Plum, M. and Nakao, M. T., ‘A computer-assisted instability proof for the Orr–Sommerfeld problem with Poiseuille flow’, Z. Angew. Math. Mech. 89 (2009) 518.Google Scholar