Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T13:44:51.812Z Has data issue: false hasContentIssue false

Corrigenda: Low-dimensional Representations of Quasi-simple Groups

Published online by Cambridge University Press:  01 February 2010

Gerhard Hiss
Affiliation:
Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, D-52062 Aachen, Germany, [email protected]
Gunter Malle
Affiliation:
FB Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper contains corrections to the tables of low-dimensional representations of quasi-simple groups published in the paper, ‘Low-dimensional representations of quasi-simple groups’, LMS Journal of Computation and Mathematics 4 (2001) 22–63.

Type
Correction
Copyright
Copyright © London Mathematical Society 2002

References

1Broué, M. and Michel, J., ‘Blocs et series de Lusztig dans un groupe reductif fini’, J. Reine. Angew. Math. 395 (1989) 5667.Google Scholar
2Cohen, A., Liebeck, M., Saxl, J. and Seitz, G. M., ‘The local maximal subgroups of exceptional groups of Lietype, finite and algebraic’, Proc. London. Math. Soc. 64 (1992) 2148.CrossRefGoogle Scholar
3Guralnick, R. and Tiep, P. H., ‘Low-dimensional representations of special linear groups in cross characteristics’, Proc. London. Math. Soc. 78 (1999) 116138.CrossRefGoogle Scholar
4Hiss, G. and Malle, G., ‘Low-dimensional representations of quasi-simple groups’, LMS. J. Comput. Math. 4 (2001) 2263.CrossRefGoogle Scholar
5Hiss, G. and Malle, G., ‘Low-dimensional representations of special unitary groups’, J.Algebra 236 (2001) 745767.CrossRefGoogle Scholar
6James, G. D., ‘Representations of the symmetric groups over the field of order 2’, J.Algebra 38 (1976) 280308.CrossRefGoogle Scholar
7Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters (Clarendon Press, Oxford, 1995).Google Scholar
8Kostrikin, A. I. and Tiep, P. H., Orthogonal decompositions and integral lattices (de Gruyter, Berlin, 1994).CrossRefGoogle Scholar
9Tiep, P. H. and Zalesskii, A. E., ‘Minimal characters of the finite classical groups’, Comm. Algebra 24 (1996) 20932167.CrossRefGoogle Scholar