No CrossRef data available.
Article contents
Conjugacy Class Representatives in the Monster Group
Published online by Cambridge University Press: 01 February 2010
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The paper describes a procedure for determining (up to algebraic conjugacy) the conjugacy class in which any element of the Monster lies, using computer constructions of representations of the Monster in characteristics 2 and 7. This procedure has been used to calculate explicit representatives for each conjugacy class.
- Type
- Research Article
- Information
- Copyright
- Copyright © London Mathematical Society 2005
References
1.Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., of finite groups (Oxford University Press, 1985; reprinted with corrections, 2004).Google Scholar
2.Conway, J. H. and Norton, S. P., ‘Monstrous moonshine’, Bull. London Math. Soc. 11 (1979) 308–339.CrossRefGoogle Scholar
3.Holmes, P. E., Linton, S. A. and Murray, S. H., ‘Product replacement in the monster’, Experiment. Math. 12 (2003) 123–126.CrossRefGoogle Scholar
4.Linton, S. A., Parker, R. A., Walsh, P. and Wilson, R. A., ‘Computer construction of the monster’, J. Group Theory 1 (1998) 307–337.Google Scholar
5.Suleiman, I. A. I., Walsh, P. G. and Wilson, R. A., ‘Conjugacy classes in sporadic simple groups’, Comm Alvebra 28 (2000) 3709–3222.Google Scholar
6.Wilson, R. A., ‘Standard generators for sporadic simple groups’, J. Algebra 184 (1996) 505–515.CrossRefGoogle Scholar
7.Wilson, R. A., ‘A construction of the monster group over GF(7) and an application’, preprint, University of Birmingham, 2000; http://web.mat.bham.ac.uk/R.A.Wilson/pubs/Mcon7.html.Google Scholar
8.Wilson, R. A., ‘Conjugacy class representatives in Fischer's baby monster’, LMSJ. Comput. Math. 5 (2002) 175–180.CrossRefGoogle Scholar
9.Wilson, R. A. et al. , ‘A world wide web atlas of group representations’ (1995–2005), http://brauer.maths.qmul.ac.uk/Atlas/.Google Scholar
You have
Access