Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:20:43.393Z Has data issue: false hasContentIssue false

Computing level one Hecke eigensystems (mod $p$)

Published online by Cambridge University Press:  01 August 2013

Craig Citro
Affiliation:
Google 651 North 34th Street Seattle, WA 98103USA email [email protected]
Alexandru Ghitza
Affiliation:
Department of Mathematics and Statistics The University of Melbourne Parkville, VIC, 3010Australia email [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe an algorithm for enumerating the set of level one systems of Hecke eigenvalues arising from modular forms (mod $p$).

Supplementary materials are available with this article.

Type
Research Article
Copyright
© The Author(s) 2013 

References

Ash, A. and Stevens, G., ‘Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues’, J. reine angew. Math. 365 (1986) 192220.Google Scholar
Carlitz, L., ‘The class number of an imaginary quadratic field’, Comment. Math. Helv. 27 (1953) 338345.Google Scholar
Centeleghe, T. G., ‘A conjectural mass formula for mod $p$ Galois representations’. PhD Thesis, University of Utah, May 2009.Google Scholar
Centeleghe, T. G., ‘Computing the number of certain Galois representations mod $p$ ’, J. Théor. Nombres Bordeaux 23 (2011) no. 3, 603627.Google Scholar
Couveignes, J-M. and Edixhoven (eds), B., Computational aspects of modular forms and Galois representations (Princeton University Press, Princeton, NJ, 2011).Google Scholar
Edixhoven, B., ‘The weight in Serre’s conjectures on modular forms’, Invent. Math. 109 (1992) no. 3, 563594.Google Scholar
Gouvêa, F. Q., ‘Non-ordinary primes: a story’, Experiment. Math. 6 (1997) no. 3, 195205.Google Scholar
Gross, B. H., ‘A tameness criterion for Galois representations associated to modular forms (mod $p$ )’, Duke Math. J. 61 (1990) no. 2, 445517.Google Scholar
Hart, W., ‘Fast library for number theory: an introduction’, Mathematical Software – ICMS 2010, Lecture Notes in Computer Science 6327 (Springer, Heidelberg, 2010) 8891, http://www.flintlib.org/.Google Scholar
Jochnowitz, N., ‘Congruences between systems of eigenvalues of modular forms’, Trans. Amer. Math. Soc. 270 (1982) no. 1, 269285.CrossRefGoogle Scholar
Jochnowitz, N., ‘A study of the local components of the Hecke algebra mod $\ell $ ’, Trans. Amer. Math. Soc. 270 (1982) no. 1, 253267.Google Scholar
Katz, N. M., ‘ $p$ -adic properties of modular schemes and modular forms’, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics 350 (Springer, Berlin, 1973) 69190.Google Scholar
Katz, N. M., ‘A result on modular forms in characteristic $p$ ’, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Mathematics 601 (Springer, Berlin, 1977) 5361.CrossRefGoogle Scholar
Khare, C., ‘Modularity of Galois representations and motives with good reduction properties’, J. Ramanujan Math. Soc. 22 (2007) no. 1, 75100.Google Scholar
Ram Murty, M., ‘Congruences between modular forms’, Analytic number theory (Kyoto, 1996), London Mathematical Society Lecture Note Series 247 (Cambridge University Press, Cambridge, 1997) 309320.CrossRefGoogle Scholar
Serre, J-P., ‘Corps locaux’. Hermann, Paris, 1968. Deuxième édition, Publications de l’Université de Nancago, No. VIII.Google Scholar
Serre, J-P., ‘Propriétés galoisiennes des points d’ordre fini des courbes elliptiques’, Invent. Math. 15 (1972) no. 4, 259331.Google Scholar
Serre, J-P., ‘Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer]’, Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Lecture Notes in Mathematics 317 (Springer, Berlin, 1973) 319338.CrossRefGoogle Scholar
Serre, J-P., ‘Modular forms of weight one and Galois representations’, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (Academic Press, London, 1977) 193268.Google Scholar
Stein, W. A. et al. , Sage Mathematics Software (Version 4.6.1). The Sage Development Team, 2011, http://www.sagemath.org.Google Scholar
Swinnerton-Dyer, H. P. F., ‘On $\ell $ -adic representations and congruences for coefficients of modular forms’, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes in Mathematics 350 (Springer, Berlin, 1973) 155.Google Scholar
Zagier, D., ‘Elliptic modular forms and their applications’, The 1-2-3 of modular forms, Universitext (Springer, Berlin, 2008) 1103.Google Scholar
Supplementary material: File

Citro Supplementary Material

Supplementary Material

Download Citro Supplementary Material(File)
File 112.6 KB